13,540 research outputs found
Quantum Entanglement Capacity with Classical Feedback
For any quantum discrete memoryless channel, we define a quantity called
quantum entanglement capacity with classical feedback (), and we show that
this quantity lies between two other well-studied quantities. These two
quantities - namely the quantum capacity assisted by two-way classical
communication () and the quantum capacity with classical feedback ()
- are widely conjectured to be different: there exists quantum discrete
memoryless channel for which . We then present a general scheme to
convert any quantum error-correcting codes into adaptive protocols for this
newly-defined quantity of the quantum depolarizing channel, and illustrate with
Cat (repetition) code and Shor code. We contrast the present notion with
entanglement purification protocols by showing that whilst the Leung-Shor
protocol can be applied directly, recurrence methods need to be supplemented
with other techniques but at the same time offer a way to improve the
aforementioned Cat code. For the quantum depolarizing channel, we prove a
formula that gives lower bounds on the quantum capacity with classical feedback
from any protocols. We then apply this formula to the protocols
that we discuss to obtain new lower bounds on the quantum capacity with
classical feedback of the quantum depolarizing channel
Comparisons of soil suction induced by evapotranspiration and transpiration of S. <i>heptaphylla</i>
For a given evapotranspiration (ETr), both soil evaporation and plant transpiration (Tr) would induce soil suction. However, the relative contribution of these two processes to the amount of suction induced is not clear. The objective of this study is to quantify ETr- and Tr-induced suction by a selected tree species, Scheffllera heptaphylla, in silty sand. The relative contribution of transpiration and evaporation to the responses of suction is then explored based on observed differences in Tr- and ETr-induced suction. In total, 12 test boxes were used for testing: 10 for vegetated soil with different values of leaf area index (LAI) and root area index (RAI), while two were for bare soil as references. Each box was exposed to identical atmospheric conditions controlled in a plant room for monitoring suction responses over a week. Due to the additional effects of soil evaporation, ETr-induced suction could be 3%–47% higher than Tr-induced suction, depending on LAI. The significance of evaporation reduced substantially when LAI was higher, as relatively less radiant energy fell on the soil surface for evaporation. For a given LAI, the effects of evaporation were less significant at deeper depths within the root zone. The effects of RAI associated with root-water uptake upon transpiration were the dominant process of ETr affecting the suction responses.</jats:p
Quantum phase transition induced by Dzyaloshinskii-Moriya in the kagome antiferromagnet
We argue that the S=1/2 kagome antiferromagnet undergoes a quantum phase
transition when the Dzyaloshinskii-Moriya coupling is increased. For
the system is in a moment-free phase and for the system develops
antiferromagnetic long-range order. The quantum critical point is found to be
using exact diagonalizations and finite-size scaling. This
suggests that the kagome compound ZnCu_6_3$ may be in a quantum
critical region controlled by this fixed point.Comment: 5 pages, 4 figures; v2: add. data included, show that D=0.1J is at a
quantum critical poin
On the capacities of bipartite Hamiltonians and unitary gates
We consider interactions as bidirectional channels. We investigate the
capacities for interaction Hamiltonians and nonlocal unitary gates to generate
entanglement and transmit classical information. We give analytic expressions
for the entanglement generating capacity and entanglement-assisted one-way
classical communication capacity of interactions, and show that these
quantities are additive, so that the asymptotic capacities equal the
corresponding 1-shot capacities. We give general bounds on other capacities,
discuss some examples, and conclude with some open questions.Comment: V3: extensively rewritten. V4: a mistaken reference to a conjecture
by Kraus and Cirac [quant-ph/0011050] removed and a mistake in the order of
authors in Ref. [53] correcte
Oblivious remote state preparation
We consider remote state preparation protocols for a set of pure states whose
projectors form a basis for operators acting on the input Hilbert space. If a
protocol (1) uses only forward communication and entanglement, (2)
deterministically prepares an exact copy of the state, and (3) does so
obliviously -- without leaking further information about the state to the
receiver -- then the protocol can be modified to require from the sender only a
single specimen of the state. Furthermore, the original protocol and the
modified protocol use the same amount of classical communication. Thus, under
the three conditions stated, remote state preparation requires at least as much
classical communication as teleportation, as Lo has conjectured [PRA 62 (2000)
012313], which is twice the expected classical communication cost of some
existing nonoblivious protocols
- …