13,179 research outputs found
Pulsed THz radiation due to phonon-polariton effect in [110] ZnTe crystal
Pulsed terahertz (THz) radiation, generated through optical rectification
(OR) by exciting [110] ZnTe crystal with ultrafast optical pulses, typically
consists of only a few cycles of electromagnetic field oscillations with a
duration about a couple of picoseconds. However, it is possible, under
appropriate conditions, to generate a long damped oscillation tail (LDOT)
following the main cycles. The LDOT can last tens of picoseconds and its
Fourier transform shows a higher and narrower frequency peak than that of the
main pulse. We have demonstrated that the generation of the LDOT depends on
both the duration of the optical pulse and its central wavelength. Furthermore,
we have also performed theoretical calculations based upon the OR effect
coupled with the phonon-polariton mode of ZnTe and obtained theoretical THz
waveforms in good agreement with our experimental observation.Comment: 9 pages, 5 figure
Quark Loop Contributions to Neutron, Deuteron, and Mercury EDMs from Supersymmetry without R parity
We present a detailed analysis of the neutron, deuteron and mercury electric
dipole moment from supersymmetry without R parity, focusing on the quark-scalar
loop contributions. Being proportional to top Yukawa and top mass, such
contributions are often large. Analytical expressions illustrating the explicit
role of the R-parity violating parameters are given following perturbative
diagonalization of mass-squared matrices for the scalars. Dominant
contributions come from the combinations for which
we obtain robust bounds. It turns out that neutron and deuteron EDMs receive
much stronger contributions than mercury EDM and any null result at the future
deuteron EDM experiment or Los Alamos neutron EDM experiment can lead to
extra-ordinary constraints on RPV parameter space. Even if R-parity violating
couplings are real, CKM phase does induce RPV contribution and for some cases
such a contribution is as strong as contribution from phases in the R-parity
violating couplings.Hence, we have bounds directly on even if the RPV parameters are all real.
Interestingly, even if slepton mass and/or is as high as 1 TeV, it
still leads to neutron EDM that is an order of magnitude larger than the
sensitivity at Los Alamos experiment. Since the results are not much sensitive
to , our constraints will survive even if other observables tighten
the constraints on .Comment: 16 pages, 10 figures, accepted for publication in Physical Review
CloudTPS: Scalable Transactions for Web Applications in the Cloud
NoSQL Cloud data services provide scalability and high availability properties for web applications but at the same time they sacrifice data consistency. However, many applications cannot afford any data inconsistency. CloudTPS is a scalable transaction manager to allow cloud database services to execute the ACID transactions of web applications, even in the presence of server failures and network partitions. We implement this approach on top of the two main families of scalable data layers: Bigtable and SimpleDB. Performance evaluation on top of HBase (an open-source version of Bigtable) in our local cluster and Amazon SimpleDB in the Amazon cloud shows that our system scales linearly at least up to 40 nodes in our local cluster and 80 nodes in the Amazon cloud
On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk
We performed a series of hydro-dynamic simulations to investigate the orbital
migration of a Jovian planet embedded in a proto-stellar disk. In order to take
into account of the effect of the disk's self gravity, we developed and adopted
an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the
exact Reimann solution for isothermal or polytropic gas, with non-reflecting
boundary conditions. Our simulations indicate that in the study of the runaway
(type III) migration, it is important to carry out a fully self consistent
treatment of the gravitational interaction between the disk and the embedded
planet. Through a series of convergence tests, we show that adequate numerical
resolution, especially within the planet's Roche lobe, critically determines
the outcome of the simulations. We consider a variety of initial conditions and
show that isolated, non eccentric protoplanet planets do not undergo type III
migration. We attribute the difference between our and previous simulations to
the contribution of a self consistent representation of the disk's self
gravity. Nevertheless, type III migration cannot be completely suppressed and
its onset requires finite amplitude perturbations such as that induced by
planet-planet interaction. We determine the radial extent of type III migration
as a function of the disk's self gravity.Comment: 19 pages, 13 figure
ASTROD, ASTROD I and their gravitational-wave sensitivities
ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) is a
mission concept with three spacecraft -- one near L1/L2 point, one with an
inner solar orbit and one with an outer solar orbit, ranging coherently with
one another using lasers to test relativistic gravity, to measure the solar
system and to detect gravitational waves. ASTROD I with one spacecraft ranging
optically with ground stations is the first step toward the ASTROD mission. In
this paper, we present the ASTROD I payload and accelerometer requirements,
discuss the gravitational-wave sensitivities for ASTROD and ASTROD I, and
compare them with LISA and radio-wave PDoppler-tracking of spacecraft.Comment: presented to the 5th Edoardo Amaldi Conference (July 6-11, 2003) and
submitted to Classical and Quantum Gravit
Evaluating implicit feedback models using searcher simulations
In this article we describe an evaluation of relevance feedback (RF) algorithms using searcher simulations. Since these algorithms select additional terms for query modification based on inferences made from searcher interaction, not on relevance information searchers explicitly provide (as in traditional RF), we refer to them as implicit feedback models. We introduce six different models that base their decisions on the interactions of searchers and use different approaches to rank query modification terms. The aim of this article is to determine which of these models should be used to assist searchers in the systems we develop. To evaluate these models we used searcher simulations that afforded us more control over the experimental conditions than experiments with human subjects and allowed complex interaction to be modeled without the need for costly human experimentation. The simulation-based evaluation methodology measures how well the models learn the distribution of terms across relevant documents (i.e., learn what information is relevant) and how well they improve search effectiveness (i.e., create effective search queries). Our findings show that an implicit feedback model based on Jeffrey's rule of conditioning outperformed other models under investigation
Enhancement of the Fractional Quantum Hall State in a Small In-Plane Magnetic Field
Using a 50-nm width, ultra-clean GaAs/AlGaAs quantum well, we have studied
the Landau level filling factor fractional quantum Hall effect in a
perpendicular magnetic field 1.7 T and determined its dependence on
tilted magnetic fields. Contrary to all previous results, the 5/2 resistance
minimum and the Hall plateau are found to strengthen continuously under an
increasing tilt angle (corresponding to an in-plane
magnetic field 0 T). In the same range of
the activation gaps of both the 7/3 and the 8/3 states are found to increase
with tilt. The 5/2 state transforms into a compressible Fermi liquid upon tilt
angle , and the composite fermion series [2+],
1, 2 can be identified. Based on our results, we discuss the relevance of
a Skyrmion spin texture at associated with small Zeeman energy in
wide quantum wells, as proposed by Wjs ., Phys. Rev.
Lett. 104, 086801 (2010).Comment: 5+ pages, 3 figures, accepted for by Phy. Rev. Let
- …
