10,761 research outputs found

    Quark Loop Contributions to Neutron, Deuteron, and Mercury EDMs from Supersymmetry without R parity

    Full text link
    We present a detailed analysis of the neutron, deuteron and mercury electric dipole moment from supersymmetry without R parity, focusing on the quark-scalar loop contributions. Being proportional to top Yukawa and top mass, such contributions are often large. Analytical expressions illustrating the explicit role of the R-parity violating parameters are given following perturbative diagonalization of mass-squared matrices for the scalars. Dominant contributions come from the combinations Biλij1B_i \lambda^{\prime}_{ij1} for which we obtain robust bounds. It turns out that neutron and deuteron EDMs receive much stronger contributions than mercury EDM and any null result at the future deuteron EDM experiment or Los Alamos neutron EDM experiment can lead to extra-ordinary constraints on RPV parameter space. Even if R-parity violating couplings are real, CKM phase does induce RPV contribution and for some cases such a contribution is as strong as contribution from phases in the R-parity violating couplings.Hence, we have bounds directly on Biλij1|B_i \lambda^{\prime}_{ij1}| even if the RPV parameters are all real. Interestingly, even if slepton mass and/or μ0\mu_0 is as high as 1 TeV, it still leads to neutron EDM that is an order of magnitude larger than the sensitivity at Los Alamos experiment. Since the results are not much sensitive to tanβ\tan \beta, our constraints will survive even if other observables tighten the constraints on tanβ\tan \beta.Comment: 16 pages, 10 figures, accepted for publication in Physical Review

    Pulsed THz radiation due to phonon-polariton effect in [110] ZnTe crystal

    Full text link
    Pulsed terahertz (THz) radiation, generated through optical rectification (OR) by exciting [110] ZnTe crystal with ultrafast optical pulses, typically consists of only a few cycles of electromagnetic field oscillations with a duration about a couple of picoseconds. However, it is possible, under appropriate conditions, to generate a long damped oscillation tail (LDOT) following the main cycles. The LDOT can last tens of picoseconds and its Fourier transform shows a higher and narrower frequency peak than that of the main pulse. We have demonstrated that the generation of the LDOT depends on both the duration of the optical pulse and its central wavelength. Furthermore, we have also performed theoretical calculations based upon the OR effect coupled with the phonon-polariton mode of ZnTe and obtained theoretical THz waveforms in good agreement with our experimental observation.Comment: 9 pages, 5 figure

    On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    Full text link
    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disk's self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disk's self gravity.Comment: 19 pages, 13 figure

    CloudTPS: Scalable Transactions for Web Applications in the Cloud

    Get PDF
    NoSQL Cloud data services provide scalability and high availability properties for web applications but at the same time they sacrifice data consistency. However, many applications cannot afford any data inconsistency. CloudTPS is a scalable transaction manager to allow cloud database services to execute the ACID transactions of web applications, even in the presence of server failures and network partitions. We implement this approach on top of the two main families of scalable data layers: Bigtable and SimpleDB. Performance evaluation on top of HBase (an open-source version of Bigtable) in our local cluster and Amazon SimpleDB in the Amazon cloud shows that our system scales linearly at least up to 40 nodes in our local cluster and 80 nodes in the Amazon cloud

    Robust pinning of magnetic moments in pyrochlore iridates

    Full text link
    Pyrochlore iridates A2Ir2O7 (A = rare earth elements, Y or Bi) hold great promise for realizing novel electronic and magnetic states owing to the interplay of spin-orbit coupling, electron correlation and geometrical frustration. A prominent example is the formation of all-in/all-out (AIAO)antiferromagnetic order in the Ir4+ sublattice that comprises of corner-sharing tetrahedra. Here we report on an unusual magnetic phenomenon, namely a cooling-field induced shift of magnetic hysteresis loop along magnetization axis, and its possible origin in pyrochlore iridates with non-magnetic Ir defects (e.g. Ir3+). In a simple model, we attribute the magnetic hysteresis loop to the formation of ferromagnetic droplets in the AIAO antiferromagnetic background. The weak ferromagnetism originates from canted antiferromagnetic order of the Ir4+ moments surrounding each non-magnetic Ir defect. The shift of hysteresis loop can be understood quantitatively based on an exchange-bias like effect in which the moments at the shell of the FM droplets are pinned by the AIAO AFM background via mainly the Heisenberg (J) and Dzyaloshinsky-Moriya (D) interactions. The magnetic pinning is stable and robust against the sweeping cycle and sweeping field up to 35 T, which is possibly related to the magnetic octupolar nature of the AIAO order.Comment: 16 pages, 4 figure
    corecore