2,246 research outputs found
Understanding the nature of "superhard graphite"
Numerous experiments showed that on cold compression graphite transforms into
a new superhard and transparent allotrope. Several structures with different
topologies have been proposed for this phase. While experimental data are
consistent with these models, the only way to solve this puzzle is to find
which structure is kinetically easiest to form. Using state-of-the-art
molecular-dynamics transition path sampling simulations, we investigate kinetic
pathways of the pressure-induced transformation of graphite to various
superhard candidate structures. Unlike hitherto applied methods for elucidating
nature of superhard graphite, transition path sampling realistically models
nucleation events necessary for physically meaningful transformation kinetics.
We demonstrate that nucleation mechanism and kinetics lead to -carbon as the
final product. -carbon, initially competitor to -carbon, is ruled out by
phase growth. Bct-C structure is not expected to be produced by cold
compression due to less probable nucleation and higher barrier of formation
Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway
<p>Abstract</p> <p>Background</p> <p>Although the mechanisms of short- and long-term potentiation of nociceptive-evoked responses are well known in the spinal cord, including central sensitization, there has been a growing body of information on such events in the cerebral cortex. In view of the importance of anterior cingulate cortex (ACC) in chronic pain conditions, this review considers neuronal plasticities in the thalamocingulate pathway that may be the earliest changes associated with such syndromes.</p> <p>Results</p> <p>A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink current in the layer II/III of the ACC <it>in vivo</it>, while high frequency stimulation potentiated the response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal and intralaminar thalamic nuclei (MITN) suggesting that the MITN projection to ACC mediates the nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different inputs <it>in vitro </it>where the medial thalamic and contralateral corpus callosum afferents were compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of the short-term plasticity.</p> <p>Conclusion</p> <p>The potentiation of ACC neuronal activity induced by thalamic bursting suggest that short-term synaptic plasticities enable the processing of nociceptive information from the medial thalamus and this temporal response variability is particularly important in pain because temporal maintenance of the response supports cortical integration and memory formation related to noxious events. Moreover, these modifications of cingulate synapses appear to regulate afferent signals that may be important to the transition from acute to chronic pain conditions associated with persistent peripheral noxious stimulation. Enhanced and maintained nociceptive activities in cingulate cortex, therefore, can become adverse and it will be important to learn how to regulate such changes in thalamic firing patterns that transmit nociceptive information to ACC in early stages of chronic pain.</p
Using ESTs to improve the accuracy of de novo gene prediction
BACKGROUND: ESTs are a tremendous resource for determining the exon-intron structures of genes, but even extensive EST sequencing tends to leave many exons and genes untouched. Gene prediction systems based exclusively on EST alignments miss these exons and genes, leading to poor sensitivity. De novo gene prediction systems, which ignore ESTs in favor of genomic sequence, can predict such "untouched" exons, but they are less accurate when predicting exons to which ESTs align. TWINSCAN is the most accurate de novo gene finder available for nematodes and N-SCAN is the most accurate for mammals, as measured by exact CDS gene prediction and exact exon prediction. RESULTS: TWINSCAN_EST is a new system that successfully combines EST alignments with TWINSCAN. On the whole C. elegans genome TWINSCAN_EST shows 14% improvement in sensitivity and 13% in specificity in predicting exact gene structures compared to TWINSCAN without EST alignments. Not only are the structures revealed by EST alignments predicted correctly, but these also constrain the predictions without alignments, improving their accuracy. For the human genome, we used the same approach with N-SCAN, creating N-SCAN_EST. On the whole genome, N-SCAN_EST produced a 6% improvement in sensitivity and 1% in specificity of exact gene structure predictions compared to N-SCAN. CONCLUSION: TWINSCAN_EST and N-SCAN_EST are more accurate than TWINSCAN and N-SCAN, while retaining their ability to discover novel genes to which no ESTs align. Thus, we recommend using the EST versions of these programs to annotate any genome for which EST information is available. TWINSCAN_EST and N-SCAN_EST are part of the TWINSCAN open source software package
Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents
Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease
Cancer incidence in British Indians and British whites in Leicester, 2001–2006
BACKGROUND: Incidence rates for many cancers are lower in India than in Britain and it is therefore of interest to compare rates in British Indians to British whites, as well as to rates in India. We present estimates for Leicester, which has the largest population of Indian origin in Britain, and also has virtually complete, self-assigned, ethnicity data. METHODS: We obtained data on all cancer registrations from 2001 to 2006 for Leicester with ethnicity data obtained by linkage to the Hospital Episode Statistics database. Age-standardised incidence rates were calculated for British Indians and British whites as well as incidence rate ratios, adjusted for age and income. RESULTS: Incidence rate ratios for British Indians compared with British whites were significantly less than 1.0 for all cancers combined (0.65) and for cancer of the breast (0.72), prostate (0.76), colon (0.46), lung (0.30), kidney (0.36), stomach (0.54), bladder (0.48) and oesophagus (0.64), but higher than 1.0 for liver cancer (1.95). CONCLUSION: These results are likely to be the most accurate estimate of cancer incidence in British Indians to date and confirm that cancer incidence in British Indians is lower than in British whites in Leicester, particularly for cancer of the breast, prostate, colon and lung (and other smoking-related cancers), but much higher than in India
The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis
In Vitro Interactions between Bacteria, Osteoblast-Like Cells and Macrophages in the Pathogenesis of Biomaterial-Associated Infections
Biomaterial-associated infections constitute a major clinical problem that is difficult to treat and often necessitates implant replacement. Pathogens can be introduced on an implant surface during surgery and compete with host cells attempting to integrate the implant. The fate of a biomaterial implant depends on the outcome of this race for the surface. Here we studied the competition between different bacterial strains and human U2OS osteoblast-like cells (ATCC HTB-94) for a poly(methylmethacrylate) surface in the absence or presence of macrophages in vitro using a peri-operative contamination model. Bacteria were seeded on the surface at a shear rate of 11 1/s prior to adhesion of U2OS cells and macrophages. Next, bacteria, U2OS cells and macrophages were allowed to grow simultaneously under low shear conditions (0.14 1/s). The outcome of the competition between bacteria and U2OS cells for the surface critically depended on bacterial virulence. In absence of macrophages, highly virulent Staphylococcus aureus or Pseudomonas aeruginosa stimulated U2OS cell death within 18 h of simultaneous growth on a surface. Moreover, these strains also caused cell death despite phagocytosis of adhering bacteria in presence of murine macrophages. Thus U2OS cells are bound to loose the race for a biomaterial surface against S. aureus or P. aeruginosa, even in presence of macrophages. In contrast, low-virulent Staphylococcus epidermidis did not cause U2OS cell death even after 48 h, regardless of the absence or presence of macrophages. Clinically, S. aureus and P. aeruginosa are known to yield acute and severe biomaterial-associated infections in contrast to S. epidermidis, mostly known to cause more low-grade infection. Thus it can be concluded that the model described possesses features concurring with clinical observations and therewith has potential for further studies on the simultaneous competition for an implant surface between tissue cells and pathogenic bacteria in presence of immune system components
Potential for early warning of viral influenza activity in the community by monitoring clinical diagnoses of influenza in hospital emergency departments
<p>Abstract</p> <p>Background</p> <p>Although syndromic surveillance systems are gaining acceptance as useful tools in public health, doubts remain about whether the anticipated early warning benefits exist. Many assessments of this question do not adequately account for the confounding effects of autocorrelation and trend when comparing surveillance time series and few compare the syndromic data stream against a continuous laboratory-based standard. We used time series methods to assess whether monitoring of daily counts of Emergency Department (ED) visits assigned a clinical diagnosis of influenza could offer earlier warning of increased incidence of viral influenza in the population compared with surveillance of daily counts of positive influenza test results from laboratories.</p> <p>Methods</p> <p>For the five-year period 2001 to 2005, time series were assembled of ED visits assigned a provisional ED diagnosis of influenza and of laboratory-confirmed influenza cases in New South Wales (NSW), Australia. Poisson regression models were fitted to both time series to minimise the confounding effects of trend and autocorrelation and to control for other calendar influences. To assess the relative timeliness of the two series, cross-correlation analysis was performed on the model residuals. Modelling and cross-correlation analysis were repeated for each individual year.</p> <p>Results</p> <p>Using the full five-year time series, short-term changes in the ED time series were estimated to precede changes in the laboratory series by three days. For individual years, the estimate was between three and 18 days. The time advantage estimated for the individual years 2003–2005 was consistently between three and four days.</p> <p>Conclusion</p> <p>Monitoring time series of ED visits clinically diagnosed with influenza could potentially provide three days early warning compared with surveillance of laboratory-confirmed influenza. When current laboratory processing and reporting delays are taken into account this time advantage is even greater.</p
Wall roughness induces asymptotic ultimate turbulence
Turbulence is omnipresent in Nature and technology, governing the transport
of heat, mass, and momentum on multiple scales. For real-world applications of
wall-bounded turbulence, the underlying surfaces are virtually always rough;
yet characterizing and understanding the effects of wall roughness for
turbulence remains a challenge, especially for rotating and thermally driven
turbulence. By combining extensive experiments and numerical simulations, here,
taking as example the paradigmatic Taylor-Couette system (the closed flow
between two independently rotating coaxial cylinders), we show how wall
roughness greatly enhances the overall transport properties and the
corresponding scaling exponents. If only one of the walls is rough, we reveal
that the bulk velocity is slaved to the rough side, due to the much stronger
coupling to that wall by the detaching flow structures. If both walls are
rough, the viscosity dependence is thoroughly eliminated in the boundary layers
and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of
transport, whose existence had been predicted by Robert Kraichnan in 1962
(Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be
extrapolated to arbitrarily large Reynolds numbers
A decomposition algorithm for robust lot sizing problem with remanufacturing option
In this paper, we propose a decomposition procedure for constructing robust optimal production plans for reverse inventory systems. Our method is motivated by the need of overcoming the excessive computational time requirements, as well as the inaccuracies caused by imprecise representations of problem parameters. The method is based on a min-max formulation that avoids the excessive conservatism of the dualization technique employed by Wei et al. (2011). We perform a computational study using our decomposition framework on several classes of computer generated test instances and we report our experience. Bienstock and Özbay (2008) computed optimal base stock levels for the traditional lot sizing problem when the production cost is linear and we extend this work here by considering return inventories and setup costs for production. We use the approach of Bertsimas and Sim (2004) to model the uncertainties in the input
- …