20,030 research outputs found
The Nature of Subproton Scale Turbulence in the Solar Wind
The nature of subproton scale fluctuations in the solar wind is an open
question, partly because two similar types of electromagnetic turbulence can
occur: kinetic Alfven turbulence and whistler turbulence. These two
possibilities, however, have one key qualitative difference: whistler
turbulence, unlike kinetic Alfven turbulence, has negligible power in density
fluctuations. In this Letter, we present new observational data, as well as
analytical and numerical results, to investigate this difference. The results
show, for the first time, that the fluctuations well below the proton scale are
predominantly kinetic Alfven turbulence, and, if present at all, the whistler
fluctuations make up only a small fraction of the total energy
Parametric survey of longitudinal prominence oscillation simulations
It is found that both microflare-sized impulsive heating at one leg of the
loop and a suddenly imposed velocity perturbation can propel the prominence to
oscillate along the magnetic dip. An extensive parameter survey results in a
scaling law, showing that the period of the oscillation, which weakly depends
on the length and height of the prominence, and the amplitude of the
perturbations, scales with , where represents the
curvature radius of the dip, and is the gravitational acceleration of
the Sun. This is consistent with the linear theory of a pendulum, which implies
that the field-aligned component of gravity is the main restoring force for the
prominence longitudinal oscillations, as confirmed by the force analysis.
However, the gas pressure gradient becomes non-negligible for short
prominences. The oscillation damps with time in the presence of non-adiabatic
processes. Compared to heat conduction, the radiative cooling is the dominant
factor leading to the damping. A scaling law for the damping timescale is
derived, i.e., , showing
strong dependence on the prominence length , the geometry of the magnetic
dip (characterized by the depth and the width ), and the velocity
perturbation amplitude . The larger the amplitude, the faster the
oscillation damps. It is also found that mass drainage significantly reduces
the damping timescale when the perturbation is too strong.Comment: 17 PAGES, 8FIGURE
Role of the Mitochondrial Permeability Transition Pore in TNF-α -Induced Recovery of Ventricular Contraction and Reduction of Infarct Size in Isolated Rat Hearts Subjected to Ischemia/Reperfusion
Pretreatment with tumor necrosis factor-α (TNF-α) is known to trigger cardioprotection. TNF-α can activate multiple downstream signaling cascades. However, it is not known whether the mitochondrial permeability transition pore (MitoPTP) is involved in TNF-α -induced cardioprotection. In the present study, we examined whether TNF-α inhibits MitoPTP opening. In isolated rat hearts subjected to 30 min regional ischemia and 120 min reperfusion, pretreatment with 10 U/ml TNF-α for 7 min followed by 10 min washout improved the recovery of left ventricular developed pressure (LVDP) and rate-pressure product (RPP = LVDP × heart rate) during reperfusion and reduced the infarct size. Administration of 20 μ mol/L atractyloside, a MitoPTP opener, for 20 min (last 5 min of ischemia and first 15 min of reperfusion) and pretreatment with 1 μ inhibitor of the Ca2+-activated K+mol/L paxilline, an channel, for 5 min before ischemia, attenuated the recovery of LVDP and RPP and the reduction of infarct size induced by TNF-α. The findings indicate that, in the isolated heart model, TNF-α protects myocardium against ischemia/reperfusion injury via inhibiting MitoPTP opening as well as by activating the Ca2+-activated K+channel.published_or_final_versio
Photometric properties and luminosity function of nearby massive early-type galaxies
We perform photometric analyses for a bright early-type galaxy (ETG) sample
with 2949 galaxies ( mag) in the redshift range of 0.05 to
0.15, drawn from the SDSS DR7 with morphological classification from Galaxy Zoo
1. We measure the Petrosian and isophotal magnitudes, as well as the
corresponding half-light radius for each galaxy. We find that for brightest
galaxies ( mag), our Petrosian magnitudes, and isophotal
magnitudes to 25 and 1\% of the sky brightness are on
average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian
values, respectively. In the first case the underestimations are caused by
overestimations in the sky background by the SDSS PHOTO algorithm, while the
latter two are also due to deeper photometry. Similarly, the typical half-light
radii () measured by the SDSS algorithm are smaller than our
measurements. As a result, the bright-end of the -band luminosity function
is found to decline more slowly than previous works. Our measured luminosity
densities at the bright end are more than one order of magnitude higher than
those of Blanton et al. (2003), and the stellar mass densities at and are a few tenths
and a factor of few higher than those of Bernardi et al. (2010). These results
may significantly alleviate the tension in the assembly of massive galaxies
between observations and predictions of the hierarchical structure formation
model.Comment: 43 pages, 14 figures, version accepted for publication in the
Astrophysical Journa
Power generation expansion planning model towards low-carbon economy and its application in china
Climate change poses a huge threat to human welfare. Hence, developing a low-carbon economy has become a prevailing and inevitable trend. Decarbonization of power generation, especially converting the current power mix into a low-carbon structure, will be a critical option for CO2 emission mitigation. In this paper, an integrated power generation expansion (PGE) planning model towards low-carbon economy is proposed, which properly integrates and formulates the impacts of various low-carbon factors on PGE models. In order to adapt to the characteristics of PGE models based on low-carbon scenario, a compromised modeling approach is presented, which reasonably decreases complexities of the model, while properly keeping the significant elements and maintaining moderate precision degree. In order to illustrate the proposed model and approach, a numerical case is studied based on the background of China's power sector, making decisions on the optimal PGE plans and revealing the prospects and potentials for CO2 emission reduction. © 2010 IEEE.published_or_final_versio
The Mitochondrial Calcium Uniporter participates in Ischemia/Reperfusion Injury and in Cardioprotection by Ischemic Preconditioning
The objective of the present study was to determine whether the mitochondrial calcium uniporter plays a role in cardioprotection by ischemic preconditioning (IPC). Isolated rat hearts were subjected to 30 min regional ischemia by ligation of the left anterior descending artery followed by 120 min reperfusion. We found that both IPC and inhibition of the mitochondrial calcium uniporter during reperfusion improved recovery of left ventricular developed pressure, maximal rise velocity and end-diastolic pressure, and reduced infarct size and lactate dehydrogenase release. These protective effects were attenuated by activating the mitochondrial calcium uniporter. We conclude that the mitochondrial calcium uniporter is involved in the cardioprotection of ischemic preconditioning.published_or_final_versio
Probing for cosmological parameters with LAMOST measurement
In this paper we study the sensitivity of the Large Sky Area Multi-Object
Fiber Spectroscopic Telescope (LAMOST) project to the determination of
cosmological parameters, employing the Monte Carlo Markov Chains (MCMC) method.
For comparison, we first analyze the constraints on cosmological parameters
from current observational data, including WMAP, SDSS and SN Ia. We then
simulate the 3D matter power spectrum data expected from LAMOST, together with
the simulated CMB data for PLANCK and the SN Ia from 5-year Supernovae Legacy
Survey (SNLS). With the simulated data, we investigate the future improvement
on cosmological parameter constraints, emphasizing the role of LAMOST. Our
results show the potential of LAMOST in probing for the cosmological
parameters, especially in constraining the equation-of-state (EoS) of the dark
energy and the neutrino mass.Comment: 7 pages and 3 figures. Replaced with version accepted for publication
in JCA
Cosmological CPT Violation and CMB Polarization Measurements
In this paper we study the possibility of testing Charge-Parity-Time Reversal
(CPT) symmetry with cosmic microwave background (CMB) experiments. We consider
two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational
CS term, and study their effects on the CMB polarization power spectra in
detail. By combining current CMB polarization measurements, the seven-year
WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on
the rotation angle deg (), indicating a
detection of the CPT violation. Here, we particularly take the
systematic errors of CMB measurements into account. After adding the QUaD
polarization data, the constraint becomes deg at 95%
confidence level. When comparing with the effect of electromagnetic CS term,
the gravitational CS term could only generate TB and EB power spectra with much
smaller amplitude. Therefore, the induced parameter can not be
constrained from the current polarization data. Furthermore, we study the
capabilities of future CMB measurements, Planck and CMBPol, on the constraints
of and . We find that the constraint of
can be significantly improved by a factor of 15. Therefore, if this rotation
angle effect can not be taken into account properly, the constraints of
cosmological parameters will be biased obviously. For the gravitational CS
term, the future Planck data still can not constrain very well, if
the primordial tensor perturbations are small, . We need the more
accurate CMBPol experiment to give better constraint on .Comment: 11 pages, 5 figures, 4 tables, Accepted for publication in JCA
- …
