22,712 research outputs found
Microwave photoresistance of a high-mobility two-dimensional electron gas in a triangular antidot lattice
The microwave (MW) photoresistance has been measured on a high-mobility
two-dimensional electron gas patterned with a shallow triangular antidot
lattice, where both the MW-induced resistance oscillations (MIRO) and
magnetoplasmon (MP) resonance are observed superposing on sharp commensurate
geometrical resonance (GR). Analysis shows that the MIRO, MP, and GR are
decoupled from each other in these experiments.Comment: 5 pages, 4 figures, paper accepted by PR
Composite fermions traversing a potential barrier
Using a composite fermion picture, we study the lateral transport between two
two-dimensional electron gases, at filling factor 1/2, separated by a potential
barrier. In the mean field approximation, composite fermions far from the
barrier do not feel a magnetic field while in the barrier region the effective
magnetic field is different from zero. This produces a cutoff in the
conductance when represented as a function of the thickness and height of the
barrier. There is a range of barrier heights for which an incompressible
liquid, at , exists in the barrier region.Comment: 3 pages, latex, 4 figures available upon request from
[email protected]. To appear in Physical Review B (RC) June 15t
A New Current Mode SIMO-Type Universal Biquad Employing Multi-Output Current Conveyors (MOCCIIs)
This study presents a new current-mode singleinput and multi-output (SIMO) type universal biquad circuit using second generation multi-output current conveyors (MOCCII) as the active components. The proposed circuit employs three MOCCIIs, two grounded capacitors and four grounded resistors, therefore offers electroning tuning possibilities. It can simultaneously realize second order low-pass, band-pass, high-pass, notch and all-pass filters. The circuit is cascadable and has low sensitivities. It provides independent control of ω0 (natural angular frequency) and Q (quality factor). The influences of MOCCII parasitic elements have been analyzed and simulated using PSPICE. Experimental results including frequency responses of low-pass, high-pass, band-pass and band-stop filters, as well as frequency responses of filters with different ω0 (keeping Q invariable) and different Q (keeping ω0 invariable) are shown to be in agreement with theory
SVM based ASM for facial landmarks location
Finding a new position for each landmark is a crucial step in active shape model (ASM). Mahalanobis distance minimization is used for this finding, provided there are enough training data such that the grey-level profiles for each landmark follow a multivariate Gaussian distribution. However, this condition could not be satisfied in most cases. In this paper, a new method support vector machine (SVM) based ASM (SVMBASM) is proposed. It approaches the finding task as a small sample size classification problem, and uses SVM classifier to deal with this problem. Moreover, considering imbalanced dataset which contains more negative instances(incorrect candidates for new position) than positive instances(correct candidates for new position), a multi-class classification framework is adopted. Performance evaluation on SJTU face database show that the proposed SVMBASM outperforms the original ASM in terms of the average error as well as the average frequency of convergence. © 2008 IEEE
Photovoltaic Oscillations Due to Edge-Magnetoplasmon Modes in a Very-High Mobility 2D Electron Gas
Using very-high mobility GaAs/AlGaAs 2D electron Hall bar samples, we have
experimentally studied the photoresistance/photovoltaic oscillations induced by
microwave irradiation in the regime where both 1/B and B-periodic oscillations
can be observed. In the frequency range between 27 and 130 GHz we found that
these two types of oscillations are decoupled from each other, consistent with
the respective models that 1/B oscillations occur in bulk while the
B-oscillations occur along the edges of the Hall bars. In contrast to the
original report of this phenomenon (Ref. 1) the periodicity of the
B-oscillations in our samples are found to be independent of L, the length of
the Hall bar section between voltage measuring leads.Comment: 4 pages, 4 figure
Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications
In this paper, the authors numerically studied the optical properties of a silicon photonic quasicrystal (PQC) nanohole array for photovoltaic applications. With the same active layer thickness, the ultimate efficiency of a solar cell integrated with an optimized PQC nanohole array can be enhanced by 9.01% and 1.40% compared to that with an ordered square lattice of a nanohole array and a random nanohole array, respectively. The absorptance enhancement is mainly due to the higher-order rotational symmetry in PQC structures, which leads to the presence of additional resonant modes, the broadening of existing modes and the reduction of surface reflectance. The angular response for both transverse-electric and transverse-magnetic modes are also analyzed in detail
A study on inclusion formation mechanism in alpha-LiIO sub 3 crystals
The spatial distribution of inclusions in alpha-LiIO3 crystals by means of an argon laser beam scanning technique is studied. The effects of crystal dimensions and solution fluid flow on the inclusion formation in the alpha-LiIO3 crystals were observed. It was further shown that the fluid flow plays an important role in the formation of inclusions. The results obtained were further applied and verified by growing a perfect alpha-LiIO3 single crystal. An experimental foundation for further theoretical studies on the causes of inclusions may be provided
Mass movement susceptibility mapping using satellite optical imagery compared with InSAR monitoring: Zigui County, Three Gorges region, China
Mass movements on steep slopes are a major hazard to
communities and infrastructure in the Three Gorges
region, China. Developing susceptibility maps of mass
movements is therefore very important in both current
and future land use planning. This study employed
satellite optical imagery and an ASTER GDEM (15 m)
to derive various parameters (namely geology; slope
gradient; proximity to drainage networks and proximity
to lineaments) in order to create a GIS-based map of
mass movement susceptibility. This map was then
evaluated using highly accurate deformation signals
processed using the Persistent Scatterer (PS) InSAR
technique. Areas of high susceptibility correspond well
to points of high subsidence, which provides a strong
support of our susceptibility map
- …
