73,341 research outputs found
Wave packet transmission of Bloch electron manipulated by magnetic field
We study the phenomenon of wave packet revivals of Bloch electrons and
explore how to control them by a magnetic field for quantum information
transfer. It is showed that the single electron system can be modulated into a
linear dispersion regime by the "quantized" flux and then an electronic wave
packet with the components localized in this regime can be transferred without
spreading. This feature can be utilized to perform the high-fidelity transfer
of quantum information encoded in the polarization of the spin. Beyond the
linear approximation, the re-localization and self-interference occur as the
novel phenomena of quantum coherence.Comment: 6 pages, 5 figures, new content adde
Quantum state swapping via qubit network with Hubbard interaction
We study the quantum state transfer (QST) in a class of qubit network with
on-site interaction, which is described by the generalized Hubbard model with
engineered couplings. It is proved that the system of two electrons with
opposite spins in this quantum network of sites can be rigorously reduced
into one dimensional engineered single Bloch electron models with central
potential barrier. With this observation we find that such system can perform a
perfect QST, the quantum swapping between two distant electrons with opposite
spins. Numerical results show such QST and the resonant-tunnelling for the
optimal on-site interaction strengths.Comment: 4 pages, 3 figure
Connections of activated hopping processes with the breakdown of the Stokes-Einstein relation and with aspects of dynamical heterogeneities
We develop a new extended version of the mode-coupling theory (MCT) for glass
transition, which incorporates activated hopping processes via the dynamical
theory originally formulated to describe diffusion-jump processes in crystals.
The dynamical-theory approach adapted here to glass-forming liquids treats
hopping as arising from vibrational fluctuations in quasi-arrested state where
particles are trapped inside their cages, and the hopping rate is formulated in
terms of the Debye-Waller factors characterizing the structure of the
quasi-arrested state. The resulting expression for the hopping rate takes an
activated form, and the barrier height for the hopping is ``self-generated'' in
the sense that it is present only in those states where the dynamics exhibits a
well defined plateau. It is discussed how such a hopping rate can be
incorporated into MCT so that the sharp nonergodic transition predicted by the
idealized version of the theory is replaced by a rapid but smooth crossover. We
then show that the developed theory accounts for the breakdown of the
Stokes-Einstein relation observed in a variety of fragile glass formers. It is
also demonstrated that characteristic features of dynamical heterogeneities
revealed by recent computer simulations are reproduced by the theory. More
specifically, a substantial increase of the non-Gaussian parameter, double-peak
structure in the probability distribution of particle displacements, and the
presence of a growing dynamic length scale are predicted by the extended MCT
developed here, which the idealized version of the theory failed to reproduce.
These results of the theory are demonstrated for a model of the Lennard-Jones
system, and are compared with related computer-simulation results and
experimental data.Comment: 13 pages, 5 figure
- …
