28,362 research outputs found

    Time-dependent Ginzburg-Landau equations for mixed d- and s-wave superconductors

    Get PDF
    A set of coupled time-dependent Ginzburg-Landau equations (TDGL) for superconductors of mixed d- and s-wave symmetry are derived microscopically from the Gor'kov equations by using the analytical continuation technique. The scattering effects due to impurities with both nonmagnetic and magnetic interactions are considered. We find that the d- and s-wave components of the order parameter can have very different relaxation times in the presence of nonmagnetic impurities. This result is contrary to a set of phenomenologically proposed TDGL equations and thus may lead to new physics in the dynamics of flux motion.Comment: 22 pages, 6 figures are available upon request, to appear in Phys. Rev.

    A Sensor Self-aware Distributed Consensus Filter for Simultaneous Localization and Tracking

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordBackground/Introduction: Simultaneous localization and tracking (SLAT) has become a very hot topic in both academia and industry for its potential wide applications in robotic equipment, sensor networks and smart devices. In order to exploit the advantages supported by state filtering and parameter estimation, researchers have proposed adaptive structures for solving SLAT problems. Existing solutions for SLAT problems that rely on belief propagation often have limited accuracy or high complexity. To adapt the brain decision mechanism for solving SLAT problems, we introduce a specific framework that is suitable for wireless sensor networks. Methods: Motivated by the high efficiency and performance of brain decision making built upon partial information and information updating, we propose a cognitively distributed SLAT algorithm based on an adaptive distributed filter, which is composed of two stages for target tracking and sensor localization. The first stage is consensus filtering that updates the target state with respect to each sensor. The second stage employs a recursive parameter estimation that exploits an on-line optimization method for refining the sensor localization. As an integrated framework, each consensus filter is specific to a separate sensor subsystem and gets feedback information from its parameter estimation. Results: The performance comparison in terms of positioning accuracy with respect to RMSE is shown and the simulation results demonstrate that the proposed ICF-RML performs better than the BPF-RML. This is expected since the distributed estimation with sufficient communication mechanism often achieves higher accuracy than that of less sufficient cases. Furthermore, the performance of the ICF-RML is comparable with that of the BPF-RML even if the latter assumes known prior network topology. We also observe from the results of tracking errors that ICF-RML accomplishes a remarkable improvement in the precision of target tracking and achieves more stable convergence than BPF-RML, in the scenario that all sensors are used to calculate the effect from data association errors. Conclusion: We apply this approach to formulate the SLAT problem and propose an effective solution, summarized in the paper. For small-size sensor networks with Gaussian distribution, our algorithm can be implemented through a distributed version of weighted information filter and a consensus protocol. Comparing the existing method, our solution shows a higher accuracy in estimation but with less complexity.National Natural Science Foundation of ChinaShandong Provincial Natural Science FoundationShandong Outstanding Young Scientist FundRoyal SocietyFundamental Research Funds for the Central Universitie

    On the Friedmann Equation in Brane-World Scenarios

    Get PDF
    The Friedmann law on the brane generically depends quadratically on the brane energy density and involves a ``dark radiation'' term due to the bulk Weyl tensor. Despite its unfamiliar form, we show how it can be derived from a standard four-dimensional Brans-Dicke theory at low energy. In particular, the dark radiation term is found to depend linearly on the brane energy densities. For any equation of state on the branes, the radion evolves such as to generate radiation-dominated cosmology. The radiation-dominated era is conventional and consistent with nucleosynthesis.Comment: 4 pages. v2,v3: discussion on BBN extended, minor correction

    Plasmon assisted transmission of high dimensional orbital angular momentum entangled state

    Full text link
    We present an experimental evidence that high dimensional orbital angular momentum entanglement of a pair of photons can be survived after a photon-plasmon-photon conversion. The information of spatial modes can be coherently transmitted by surface plasmons. This experiment primarily studies the high dimensional entangled systems based on surface plasmon with subwavelength structures. It maybe useful in the investigation of spatial mode properties of surface plasmon assisted transmission through subwavelength hole arrays.Comment: 7 pages,6 figure

    On the Study of Wireless Signal Noise for Designing Network Infrastructure of Knowledge Management Systems

    Get PDF
    Copyright © 2015 IEEEKnowledge and information management systems are usually supported by wireless networks that strongly rely on reliable received signal strength. The interruption and outage of such system may lead to significant performance disruption. In order to deal with one of the major contributors: noise, this paper investigates the fundamentals of wireless signals and proposes a method to identify and model the noise components quantitatively. We investigate the theoretical method and empirically study two wireless system configurations - one with omnidirectional antennas and one with directional antennas. Results based on real-world experiments confirm the existence and exact contributions of coloured noise components. Based on the preliminary results of this study, future information management systems can be designed with enhanced network support to cope with the variation of signals for improved performance.This paper is sponsored by the Research Councils UK Digital Economy Theme Sustainable Society Network+ and Royal Society-NSFC Grant No. IE131036, and partially supported by DHI Scotland through the Smartcough/Macmasters project

    Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation

    Full text link
    The optimal NN-pulse dynamical decoupling discovered by Uhrig for a spin-boson mmodel [Phys. Rev. Lett, {\bf 98}, 100504 (2007)] is proved to be universal in suppressing to O(TN+1)O(T^{N+1}) the pure dephasing or the longitudinal relaxation of a qubit (or spin-1/2) coupled to a generic bath in a short-time evolution of duration TT. It is also found that for the purpose of suppressing the longitudinal relaxation, an ideal Uhrig π\pi-pulse sequence can be generalized to a sequence consisting of the ideal one superimposed with finite-duration pulses satisfying certain symmetry requirements.Comment: 4 pages, 1 figure

    Composition, vigor, and proteome of mature soybean seeds developed under high temperature

    Get PDF
    The effects of high temperature treatment on soybean [Glycine max (L.) Merr.] seed composition, vigor, and proteome were investigated using mature dry seeds harvested from plants grown in environment-controlled chambers. High day/night temperatures (37/30[degrees]C) from stages R5 through R8 altered ratios of individual fatty acids to total fatty acid compared to the control (27/18[degrees]C). Concentration of sugars decreased, but total protein and phytic acid concentration were unchanged. High temperature resulted in a greater proportion of abnormal seeds, but normal-appearing seed exhibited reduced germination and vigor. Proteomic analysis detected 20 protein identities whose accumulations were changed by the high temperature. Fourteen spots were identified as seven subunits of seed storage proteins. The remaining six proteins were identified as those responding to abiotic stresses or having a function in respiration: (i) sucrose binding protein, (ii) Class III acidic endochitinase, (iii) heat shock protein (HSP22), (iv) late embryo abundant protein, (v) Bowman-Birk proteinase inhibitor, and (vi) formate dehydrogenase. High temperature during seed development changed soybean seed composition and decreased seed vigor, but also changed seed protein expression profiles
    • …
    corecore