114,128 research outputs found
Electronic states in a magnetic quantum-dot molecule: phase transitions and spontaneous symmetry breaking
We show that a double quantum-dot system made of diluted magnetic
semiconductor behaves unlike usual molecules. In a semiconductor double quantum
dot or in a diatomic molecule, the ground state of a single carrier is
described by a symmetric orbital. In a magnetic material molecule, new ground
states with broken symmetry can appear due the competition between the
tunnelling and magnetic polaron energy. With decreasing temperature, the ground
state changes from the normal symmetric state to a state with spontaneously
broken symmetry. Interestingly, the symmetry of a magnetic molecule is
recovered at very low temperatures. A magnetic double quantum dot with
broken-symmetry phases can be used a voltage-controlled nanoscale memory cell.Comment: 4 pages, 5 figure
Anisotropies in insulating LaSrCuO: angular resolved photoemission and optical absorption
Due to the orthorhombic distortion of the lattice, the electronic hopping
integrals along the and diagonals, the orthorhombic directions, are
slightly different. We calculate their difference in the LDA and find
meV. We argue that electron
correlations in the insulating phase of LaSrCuO, i. e. at
doping dramatically enhance the -splitting between the - and -hole valleys. In particular, we predict
that the intensity of both angle-resolved photoemission and of optical
absorption is very different for the and nodal points
Iron Deficiency Anemia: An Unexpected Cause of an Acute Occipital Lobe Stroke in an Otherwise Healthy Young Woman
A 29-year-old caucasian woman who presented to the hospital with an acute onset of right eye visual disturbance and headache was found to have an acute left occipital lobe infarction. Past medical history was significant for iron deficiency anemia (IDA) secondary to menorrhagia. Her initial hemoglobin level was 7.8 G/DL, and her symptoms improved after iron and blood transfusions. Hypercoagulable studies were completed in the outpatient setting, and the results were unremarkable. Her acute stroke was most likely related to IDA as she had low cardiovascular risk factors along with a negative complete stroke workup
A new comparison between solid-state thermionics and thermoelectrics
It is shown that equations for electrical current in solid-state thermionic
and thermoelectric devices converge for devices with a width equal to the mean
free path of electrons, yielding a common expression for intensive electronic
efficiency in the two types of devices. This result is used to demonstrate that
the materials parameters for thermionic and thermoelectric devices are equal,
rather than differing by a multiplicative factor as previously thought
Cooling of Nanomechanical Resonator Based on Periodical Coupling to Cooper Pair Box
We propose and study an active cooling mechanism for the nanomechanical
resonator (NAMR) based on periodical coupling to a Cooper pair box (CPB), which
is implemented by a designed series of magnetic flux pluses threading through
the CPB. When the initial phonon number of the NAMR is not too large, this
cooling protocol is efficient in decreasing the phonon number by two to three
orders of magnitude. Our proposal is theoretically universal in cooling various
boson systems of single mode. It can be specifically generalized to prepare the
nonclassical state of the NAMR.Comment: 5pages,3figure
The Fermi edge singularity in the SU(N) Wolff model
The low temperature properties of the SU(N) Wolff impurity model are studied
via Abelian bosonization. The path integral treatment of the problem allows for
an exact evaluation of low temperature properties of the model. The single
particle Green's function enhances due to the presence of local correlation.
The basic correlation function such as the charge or spin correlator are also
influenced by the presence of impurity, and show local Fermi liquid behaviour.
The X-ray absorption is affected by the presence of local Hubbard interaction.
The exponent is decreased (increased) for repulsive (attractive) interactions.Comment: 7 pages, 4 figure
Quantum-Classical Transition of Photon-Carnot Engine Induced by Quantum Decoherence
We study the physical implementation of the Photon Carnot engine (PCE) based
on the cavity QED system [M. Scully et al, Science, \textbf{299}, 862 (2003)].
Here, we analyze two decoherence mechanisms for the more practical systems of
PCE, the dissipation of photon field and the pure dephasing of the input atoms.
As a result we find that (I) the PCE can work well to some extent even in the
existence of the cavity loss (photon dissipation); and (II) the short-time
atomic dephasing, which can destroy the PCE, is a fatal problem to be overcome.Comment: 6 pages, 3 figure
- …