26,660 research outputs found

    Impurity scattering and Friedel oscillations in mono-layer black phosphorus

    Full text link
    We study the effect of impurity scattering effect in black phosphorurene (BP) in this work. For single impurity, we calculate impurity induced local density of states (LDOS) in momentum space numerically based on tight-binding Hamiltonian. In real space, we calculate LDOS and Friedel oscillation analytically. LDOS shows strong anisotropy in BP. Many impurities in BP are investigated using TT-matrix approximation when the density is low. Midgap states appear in band gap with peaks in DOS. The peaks of midgap states are dependent on impurity potential. For finite positive potential, the impurity tends to bind negative charge carriers and vise versa. The infinite impurity potential problem is related to chiral symmetry in BP

    Experimental Demonstration of Quantum State Multi-meter and One-qubit Fingerprinting in a Single Quantum Device

    Full text link
    We experimentally demonstrate in NMR a quantum interferometric multi-meter for extracting certain properties of unknown quantum states without resource to quantum tomography. It can perform direct state determinations, eigenvalue/eigenvector estimations, purity tests of a quantum system, as well as the overlap of any two unknown quantum states. Using the same device, we also demonstrate one-qubit quantum fingerprinting

    Vector magnetic field sensing by single nitrogen vacancy center in diamond

    Full text link
    In this Letter, we proposed and experimentally demonstrated a method to detect vector magnetic field with a single nitrogen vacancy (NV) center in diamond. The magnetic field in parallel with the axis of the NV center can be obtained by detecting the electron Zeeman shift, while the Larmor precession of an ancillary nuclear spin close to the NV center can be used to measure the field perpendicular to the axis. Experimentally, both the Zeeman shift and Larmor precession can be measured through the fluorescence from the NV center. By applying additional calibrated magnetic fields, complete information of the vector magnetic field can be achieved with such a method. This vector magnetic field detection method is insensitive to temperature fluctuation and it can be applied to nanoscale magnetic measurement.Comment: 5 pages, 5 figure

    Experimental demonstration of an efficient quantum phase-covariant cloning and its possible applications to simulating eavesdropping in quantum cryptography

    Full text link
    We describe a nuclear magnetic resonance (NMR) experiment which implements an efficient one-to-two qubit phase-covariant cloning machine(QPCCM). In the experiment we have achieved remarkably high fidelities of cloning, 0.848 and 0.844 respectively for the original and the blank qubit. This experimental value is close to the optimal theoretical value of 0.854. We have also demonstrated how to use our phase-covariant cloning machine for quantum simulations of bit by bit eavesdropping in the four-state quantum key distribution protocol.Comment: 4 pages, 5 figure

    Experimental Quantum Cloning with Prior Partial Information

    Full text link
    When prior partial information about a state to be cloned is available, it can be cloned with a fidelity higher than that of universal quantum cloning. We experimentally verify this intriguing relationship between the cloning fidelity and the prior information by reporting the first experimental optimal quantum state-dependent cloning, using nuclear magnetic resonance techniques. Our experiments may further have important implications into many quantum information processing protocols.Comment: 4 pages, 2 figure

    Novel micromachined silicon acoustic delay line systems for real-time photoacoustic tomography applications

    Get PDF
    In current photoacoustic tomography (PAT) systems, ultrasound transducer arrays and multi-channel data acquisition (DAQ) electronics are used to receive the PA signals. To achieve real-time PA imaging, massive 1D or even 2D transducer arrays and large number of DAQ channels are necessary. As a result, the ultrasound receiver becomes very complex, bulky and also costly. In this paper, we report the development of novel micromachined silicon acoustic delay line systems, which are expected to provide a new approach to address the above issue. First, fundamental building block structures of the acoustic delay line systems were designed and fabricated. Their acoustic properties were characterized with ultrasound and photoacoustic measurements. Second, two different acoustic delay line systems (parallel and serial) were designed and fabricated using advanced micromachining processes to ensure compact size, high accuracy, and good repeatability. The transmission of multiple acoustic signals in the acoustic delay line systems were studied with ultrasound experiment. Experimental results show that the silicon acoustic delay line systems can guide multiple channels of acoustic signals with low loss and distortion. With the addition of a set of suitable time delays, the time-delay acoustic signals arrived at a single-element transducer at different times and were unambiguously received and processed by the following DAQ electronics. Therefore, the micromachined silicon acoustic delay line systems could be used to combine multiple signal channels into a single one (without the involvement of electronic multiplexing), thereby reducing the complexity and cost of the ultrasound receiver for real-time PAT application

    Phonon-phason coupling in icosahedral quasicrystals

    Full text link
    From relaxation simulations of decoration-based quasicrystal structure models using microscopically based interatomic pair potentials, we have calculated the (usually neglected) phonon-phason coupling constant. Its sign is opposite for the two alloys studied, i-AlMn and i-(Al,Cu)Li; a dimensionless measure of its magnitude relative to the phonon and phason elastic constants is of order 1/10, suggesting its effects are small but detectable. We also give a criterion for when phonon-phason effects are noticeable in diffuse tails of Bragg peaks.Comment: 7 pages, LaTeX, uses Europhys Lett macros (included
    corecore