12,507 research outputs found
Unitary chiral dynamics in decays into and the role of the scalar mesons
We make a theoretical study of the \J decays into ,
, and using the techniques of
the chiral unitary approach stressing the important role of the scalar
resonances dynamically generated through the final state interaction of the two
pseudoscalar mesons. We also discuss the importance of new mechanisms with
intermediate exchange of vector and axial-vector mesons and the role played by
the OZI rule in the \J\phi\pi\pi vertex, quantifying its effects. The results
nicely reproduce the experimental data for the invariant mass distributions in
all the channels considered.Comment: Prepared for the 10th International Symposium on Meson-Nucleon
Physics and the Structure of the Nucleo
Flavor SU(3) analysis of charmless B->PP decays
We perform a global fits to charmless decays which independently
constrain the vertex of the unitarity triangle. The
fitted amplitudes and phase are used to predict the branching ratios and CP
asymmetries of all decay modes, including those of the system. Different
schemes of SU(3) breaking in decay amplitude sizes are analyzed. The
possibility of having a new physics contribution to decays is also
discussed.Comment: 3 pages, 2 figs. Talk given at EPS-HEP07 To appear in the
proceedings, Reference adde
Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis
In this work we perform theoretical analysis about a coupled RC circuit with
constant driven currents. Starting from stochastic differential equations,
where voltages are subject to thermal noises, we derive time-correlation
functions, steady-state distributions and transition probabilities of the
system. The validity of the fluctuation theorem (FT) is examined for scenarios
with complete and incomplete descriptions.Comment: 4 pages, 1 figur
Modelling the Extreme X-ray Spectrum of IRAS 13224-3809
The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability,
frequency depended time lags, and strong Fe K line and Fe L features in the
long 2011 XMM-Newton observation. In this work we study the spectral properties
of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the
nature of the source, focusing in particular on the spectral variability
exhibited. The RGS spectrum shows no obvious signatures of absorption by
partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra
with a model that includes relativistic reflection from the inner accretion
disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV)
blackbody, which may originate in the accretion disc, either as direct or
reprocessed thermal emission. We find that the reflection model explains the
time-averaged spectrum well, and we also undertake flux-resolved and
time-resolved spectral analyses, which provide evidence of gravitational
light-bending effects. Additionally, the temperature and flux of the blackbody
component are found to follow the relation expected for simple
thermal blackbody emission from a constant emitting area, indicating a physical
origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA
Quasi-local energy and the choice of reference
A quasi-local energy for Einstein's general relativity is defined by the
value of the preferred boundary term in the covariant Hamiltonian formalism.
The boundary term depends upon a choice of reference and a time-like
displacement vector field (which can be associated with an observer) on the
boundary of the region. Here we analyze the spherical symmetric cases. For the
obvious analytic choice of reference based on the metric components, we find
that this technique gives the same quasi-local energy values using several
standard coordinate systems and yet can give different values in some other
coordinate systems. For the homogeneous-isotropic cosmologies, the energy can
be non-positive, and one case which is actually flat space has a negative
energy. As an alternative, we introduce a way to determine the choice of both
the reference and displacement by extremizing the energy. This procedure gives
the same value for the energy in different coordinate systems for the
Schwarzschild space, and a non-negative value for the cosmological models, with
zero energy for the dynamic cosmology which is actually Minkowski space. The
timelike displacement vector comes out to be the dual mean curvature vector of
the two-boundary.Comment: 21 pages; revised version to appear in CQ
Flavor SU(3) symmetry and QCD factorization in and decays
Using flavor SU(3) symmetry, we perform a model-independent analysis of
charmless decays. All the relevant
topological diagrams, including the presumably subleading diagrams, such as the
QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation
ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be
important in understanding the data for penguin-dominated decay modes. In this
work we make efforts to bridge the (model-independent but less quantitative)
topological diagram or flavor SU(3) approach and the (quantitative but somewhat
model-dependent) QCD factorization (QCDF) approach in these decays, by
explicitly showing how to translate each flavor SU(3) amplitude into the
corresponding terms in the QCDF framework. After estimating each flavor SU(3)
amplitude numerically using QCDF, we discuss various physical consequences,
including SU(3) breaking effects and some useful SU(3) relations among decay
amplitudes of and .Comment: 47 pages, 3 figures, 28 table
Spin injection from perpendicular magnetized ferromagnetic -MnGa into (Al,Ga)As heterostructures
Electrical spin injection from ferromagnetic -MnGa into an (Al,Ga)As
p-i-n light emitting diode (LED) is demonstrated. The -MnGa layers show
strong perpendicular magnetocrystalline anisotropy, enabling detection of spin
injection at remanence without an applied magnetic field. The bias and
temperature dependence of the spin injection are found to be qualitatively
similar to Fe-based spin LED devices. A Hanle effect is observed and
demonstrates complete depolarization of spins in the semiconductor in a
transverse magnetic field.Comment: 4 pages, 3 figure
X-ray Lags in PDS 456 Revealed by Suzaku Observations
X-ray reverberation lags from the vicinity of supermassive black holes have
been detected in almost 30 AGN. The soft lag, which is the time delay between
the hard and soft X-ray light curves, is usually interpreted as the time
difference between the direct and reflected emission, but is alternatively
suggested to arise from the direct and scattering emission from distant clouds.
By analysing the archival Suzaku observations totalling an exposure time of ~
770 ks, we discover a soft lag of ks at Hz in
the luminous quasar PDS 456, which is the longest soft lag and lowest Fourier
frequency reported to date. In this study, we use the maximum likelihood method
to deal with non-continuous nature of the Suzaku light curves. The result
follows the mass-scaling relation for soft lags, which further supports that
soft lags originate from the innermost areas of AGN and hence are best
interpreted by the reflection scenario. Spectral analysis has been performed in
this work and we find no evidence of clumpy partial-covering absorbers. The
spectrum can be explained by a self-consistent relativistic reflection model
with warm absorbers, and spectral variations over epochs can be accounted for
by the change of the continuum, and of column density and ionization states of
the warm absorbers.Comment: accepted for publication in MNRA
- …