38,344 research outputs found
Duration distributions for different softness groups of gamma-ray bursts
Gamma-ray bursts (GRBs) are divided into two classes according to their
durations. We investigate if the softness of bursts plays a role in the
conventional classification of the objects. We employ the BATSE (Burst and
Transient Source Experiment) catalog and analyze the duration distributions of
different groups of GRBs associated with distinct softness. Our analysis
reveals that the conventional classification of GRBs with the duration of
bursts is influenced by the softness of the objects. There exits a bimodality
in the duration distribution of GRBs for each group of bursts and the time
position of the dip in the bimodality histogram shifts with the softness
parameter. Our findings suggest that the conventional classification scheme
should be modified by separating the two well-known populations in different
softness groups, which would be more reasonable than doing so with a single
sample. According to the relation between the dip position and the softness
parameter, we get an empirical function that can roughly set apart the
short-hard and long-soft bursts: , where is the softness parameter adopted in this paper.Comment: 20 pages, 10 figure
Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol
The participant attack is the most serious threat for quantum secret-sharing
protocols. We present a method to analyze the security of quantum
secret-sharing protocols against this kind of attack taking the scheme of
Hillery, Buzek, and Berthiaume (HBB) [Phys. Rev. A 59 1829 (1999)] as an
example. By distinguishing between two mixed states, we derive the necessary
and sufficient conditions under which a dishonest participant can attain all
the information without introducing any error, which shows that the HBB
protocol is insecure against dishonest participants. It is easy to verify that
the attack scheme of Karlsson, Koashi, and Imoto [Phys. Rev. A 59, 162 (1999)]
is a special example of our results. To demonstrate our results further, we
construct an explicit attack scheme according to the necessary and sufficient
conditions. Our work completes the security analysis of the HBB protocol, and
the method presented may be useful for the analysis of other similar protocols.Comment: Revtex, 7 pages, 3 figures; Introduction modifie
Jet energy loss and high photon production in hot quark-gluon plasma
Jet-quenching and photon production at high transverse momentum are studied
at RHIC energies, together with the correlation between jets and photons. The
energy loss of hard partons traversing the hot QGP is evaluated in the AMY
formalism, consistently taking into account both induced gluon emission and
elastic collisions. The production of high photons in Au+Au collisions is
calculated, incorporating a complete set of photon-production channels. Putting
all these ingredients together with a (3+1)-dimensional ideal relativistic
hydrodynamical description of the thermal medium, we achieve a good description
of the current experimental data. Our results illustrate that the interaction
between hard jets and the soft medium is important for a complete understanding
of jet quenching, photon production, and photon-hadron correlations in
relativistic nuclear collisions.Comment: 4 pages, 4 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
Singular electrostatic energy of nanoparticle clusters
The binding of clusters of metal nanoparticles is partly electrostatic. We
address difficulties in calculating the electrostatic energy when high charging
energies limit the total charge to a single quantum, entailing unequal
potentials on the particles. We show that the energy at small separation
has a strong logarithmic dependence on . We give a general law for the
strength of this logarithmic correction in terms of a) the energy at contact
ignoring the charge quantization effects and b) an adjacency matrix specifying
which spheres of the cluster are in contact and which is charged. We verify the
theory by comparing the predicted energies for a tetrahedral cluster with an
explicit numerical calculation.Comment: 17 pages, 3 figures. Submitted to Phys Rev
Morphology and Orientation Selection of Non-Metallic Inclusions in Electrified Molten Metal
The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modelling and numerical calculation. Two geometric factors, namely the circularity (fc) and alignment ratio (fe) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follows the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations
Differential effects of low-molecular-weight organic acids on the mobilization of soil-borne arsenic and trace metals
A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated
elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of
other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite
- …
