34,179 research outputs found
Magnetic monopole loop for the Yang-Mills instanton
We investigate 't Hooft-Mandelstam monopoles in QCD in the presence of a
single classical instanton configuration. The solution to the Maximal Abelian
projection is found to be a circular monopole trajectory with radius
centered on the instanton. At zero loop radius, there is a marginally stable
(or flat) direction for loop formation to . We argue that loops
will form, in the semi-classical limit, due to small perturbations such as the
dipole interaction between instanton anti-instanton pairs. As the instanton gas
becomes a liquid, the percolation of the monopole loops may therefore provide a
semi-classical precursor to the confinement mechanism.Comment: 19 pages, ReVTeX, 5 Encaptulated Postscript figure
On the Eikonal Approximation in AdS Space
We explore the eikonal approximation to graviton exchange in AdS_5 space, as
relevant to scattering in gauge theories. We restrict ourselves to the regime
where conformal invariance of the dual gauge theory holds, and to large 't
Hooft coupling where the computation involves pure gravity. We give a heuristic
argument, a direct loop computation, and a shock wave derivation. The scalar
propagator in AdS_3 plays a key role, indicating that even at strong coupling,
two-dimensional conformal invariance controls high-energy four-dimensional
gauge-theory scattering.Comment: 22 pages, 2 figures; published version: updated references and
several clarifying remarks adde
Disk wind feedback from high-mass protostars
We perform a sequence of 3D magnetohydrodynamic (MHD) simulations of the
outflow-core interaction for a massive protostar forming via collapse of an
initial cloud core of . This allows us to characterize the
properties of disk wind driven outflows from massive protostars, which can
allow testing of different massive star formation theories. It also enables us
to assess quantitatively the impact of outflow feedback on protostellar core
morphology and overall star formation efficiency. We find that the opening
angle of the flow increases with increasing protostellar mass, in agreement
with a simple semi-analytic model. Once the protostar reaches
the outflow's opening angle is so wide that it has blown
away most of the envelope, thereby nearly ending its own accretion. We thus
find an overall star formation efficiency of , similar to that
expected from low-mass protostellar cores. Our simulation results therefore
indicate that the MHD disk wind outflow is the dominant feedback mechanism for
helping to shape the stellar initial mass function from a given prestellar core
mass function.Comment: Accepted for publication in Ap
The Impact of Feedback in Massive Star Formation. II. Lower Star Formation Efficiency at Lower Metallicity
We conduct a theoretical study of the formation of massive stars over a wide
range of metallicities from 1e-5 to 1Zsun and evaluate the star formation
efficiencies (SFEs) from prestellar cloud cores taking into account multiple
feedback processes. Unlike for simple spherical accretion, in the case of disk
accretion feedback processes do not set upper limits on stellar masses. At
solar metallicity, launching of magneto-centrifugally-driven outflows is the
dominant feedback process to set SFEs, while radiation pressure, which has been
regarded to be pivotal, has only minor contribution even in the formation of
over-100Msun stars. Photoevaporation becomes significant in over-20Msun star
formation at low metallicities of <1e-2Zsun, where dust absorption of ionizing
photons is inefficient. We conclude that if initial prestellar core properties
are similar, then massive stars are rarer in extremely metal-poor environments
of 1e-5 - 1e-3Zsun. Our results give new insight into the high-mass end of the
initial mass function and its potential variation with galactic and
cosmological environments.Comment: 13 pages, 9 figures, accepted for publication in The Astrophysical
Journa
- …
