51,814 research outputs found

    Probing Electroweak Symmetry Breaking Mechanism at the LHC: A Guideline from Power Counting Analysis

    Full text link
    We formulate the equivalence theorem as a theoretical criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting method for the chiral Lagrangian formulated electroweak theories. Armed with these, we perform a systematic analysis on the sensitivities of the scattering processes W±W±→W±W±W^\pm W^\pm \rightarrow W^\pm W^\pm and qqˉ′→W±Zq\bar{q}'\rightarrow W^\pm Z for testing all possible effective bosonic operators in the chiral Lagrangian formulated electroweak theories at the CERN Large Hadron Collider (LHC). The analysis shows that these two kinds of processes are "complementary" in probing the electroweak symmetry breaking sector.Comment: Extended version, 11-page-Latex-file and 3 separate PS-Figs. To be Published in Mod.Phys.Lett.

    Entanglement-assisted transformation is asymptotically equivalent to multiple-copy transformation

    Full text link
    We show that two ways of manipulation of quantum entanglement, namely, entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. {\bf 83}, 3566 (1999)] and multiple-copy transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A {\bf 65}, 052315 (2002)], are equivalent in the sense that they can asymptotically simulate each other's ability to implement a desired transformation from a given source state to another given target state with the same optimal success probability. As a consequence, this yields a feasible method to evaluate the optimal conversion probability of an entanglement-assisted transformation.Comment: 5 pages, revtex4, references updated, no figures. A slightly shorter version appears in PR
    • …
    corecore