22,515 research outputs found
Accurate determination of tensor network state of quantum lattice models in two dimensions
We have proposed a novel numerical method to calculate accurately the
physical quantities of the ground state with the tensor-network wave function
in two dimensions. We determine the tensor network wavefunction by a projection
approach which applies iteratively the Trotter-Suzuki decomposition of the
projection operator and the singular value decomposition of matrix. The norm of
the wavefunction and the expectation value of a physical observable are
evaluated by a coarse grain renormalization group approach. Our method allows a
tensor-network wavefunction with a high bond degree of freedom (such as D=8) to
be handled accurately and efficiently in the thermodynamic limit. For the
Heisenberg model on a honeycomb lattice, our results for the ground state
energy and the staggered magnetization agree well with those obtained by the
quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table
Fault tolerant quantum key distribution protocol with collective random unitary noise
We propose an easy implementable prepare-and-measure protocol for robust
quantum key distribution with photon polarization. The protocol is fault
tolerant against collective random unitary channel noise. The protocol does not
need any collective quantum measurement or quantum memory. A security proof and
a specific linear optical realization using spontaneous parametric down
conversion are given.Comment: Accepted by PRA as a Rapid Communicatio
Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms
in a one-dimensional optical lattice with a double-well confining trap using
the density-matrix renormalization group. At low density, the system behaves
similarly as two separated ones inside harmonic traps. At high density,
however, interesting features appear as the consequence of the quantum
tunneling between the two wells and the competition between the "superfluid"
and Mott regions. They are characterized by a rich step-plateau structure in
the visibility and the satellite peaks in the momentum distribution function as
a function of the on-site repulsion. These novel properties shed light on the
understanding of the phase coherence between two coupled condensates and the
off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure
A decoy-state protocol for quantum cryptography with 4 intensities of coherent states
In order to beat any type of photon-number-splitting attack, we propose a
protocol for quantum key distributoin (QKD) using 4 different intensities of
pulses. They are vacuum and coherent states with mean photon number
and . is around 0.55 and this class of pulses are used as the
main signal states. The other two classes of coherent states () are
also used signal states but their counting rates should be studied jointly with
the vacuum. We have shown that, given the typical set-up in practice, the key
rate from the main signal pulses is quite close to the theoretically allowed
maximal rate in the case given the small overall transmittance of
A unified approach for exactly solvable potentials in quantum mechanics using shift operators
We present a unified approach for solving and classifying exactly solvable
potentials. Our unified approach encompasses many well-known exactly solvable
potentials. Moreover, the new approach can be used to search systematically for
a new class of solvable potentials.Comment: RevTex, 8 page
Three-intensity decoy state method for device independent quantum key distribution with basis dependent errors
We study the measurement device independent quantum key distribution (MDIQKD)
in practice with limited resource, when there are only 3 different states in
implementing the decoy-state method and when there are basis dependent coding
errors. We present general formulas for the decoy-state method for two-pulse
sources with 3 different states, which can be applied to the recently proposed
MDIQKD with imperfect single-photon source such as the coherent states or the
heralded states from the parametric down conversion. We point out that the
existing result for secure QKD with source coding errors does not always hold.
We find that very accurate source coding is not necessary. In particular, we
loosen the precision of existing result by several magnitude orders for secure
QKD.Comment: Published version with Eq.(17) corrected. We emphasize that our major
result (Eq.16) for the decoy-state part can be applied to generate a key rate
very close to the ideal case of using infinite different coherent states, as
was numerically demonstrated in Ref.[21]. Published in PRA, 2013, Ja
Secure and efficient decoy-state quantum key distribution with inexact pulse intensities
We present a general theorem for the efficient verification of the lower
bound of single-photon transmittance. We show how to do decoy-state quantum key
distribution efficiently with large random errors in the intensity control. In
our protocol, the linear terms of fluctuation disappear and only the quadratic
terms take effect. We then show the unconditional security of decoy-state
method with whatever error pattern in intensities of decoy pulses and signal
pulses provided that the intensity of each decoy pulse is less than and
the intensity of each signal pulse is larger than
A systematic study on the binding energy of hypernuclei
In this paper, we calculated the binding energy per baryon of the
hypernuclei systemically, using the relativistic mean field theory (RMF) in a
statistic frame. Some resemble properties are found among most of the
hypernuclei found in experiments. The data show that a hypernucleus
will be more stable, if it is composed of a hyperon adding to a
stable normal nuclear core, or a hyperon replacing a neutron in a
stable normal nuclear core. According to our calculations, existences of some
new hypernuclei are predicted under the frame of RMF.Comment: 8 pages, 6 figures, 3 table
- …
