747 research outputs found

    See a Black Hole on a Shoestring

    Full text link
    The modes of vibration of hanging and partially supported strings provide useful analogies to scalar fields travelling through spacetimes that admit conformally flat spatial sections. This wide class of spacetimes includes static, spherically symmetric spacetimes. The modes of a spacetime where the scale factor depends as a power-law on one of the coordinates provide a useful starting point and yield a new classification of these spacetimes on the basis of the shape of the string analogue. The family of corresponding strings follow a family of curves related to the cycloid, denoted here as hypercycloids (for reasons that will become apparent). Like the spacetimes that they emulate these strings exhibit horizons, typically at their bottommost points where the string tension vanishes; therefore, hanging strings may provide a new avenue for the exploration of the quantum mechanics of horizons.Comment: 5 pages, 1 figure, extensive changes to refect version accepted to PR

    Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems

    Full text link
    Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d≥4{\rm d}\geq4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d−1)>3({\rm d}-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetimes in rendered into arbitrary d>4{\rm d}>4 dimensions. Then a theorem, new in d=4{\rm d}=4 and d>4{\rm d}>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, as particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in d-dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with the several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.Comment: 27 page

    Black string and velocity frame dragging

    Full text link
    We investigate velocity frame dragging with the boosted Schwarzschild black string solution and the boosted Kaluza-Klein bubble solution, in which a translational symmetry along the boosted zz-coordinate is implemented. The velocity frame dragging effect can be nullified by the motion of an observer using the boost symmetry along the z−z-coordinate if it is not compact. However, in spacetime with the compact z−z-coordinate, we show that the effect cannot be removed since the compactification breaks the global Lorentz boost symmetry. As a result, the comoving velocity is dependent on rr and the momentum parameter along the z−z-coordinate becomes an observer independent characteristic quantity of the black string and bubble solutions. The dragging induces a spherical ergo-region around the black string.Comment: 8 pages, no figure, some correction

    Lithiation of InSb and Cu2_2Sb : A Theoretical Investigation

    Full text link
    In this work the mechanism of Li insertion/intercalation in the anode materials InSb and Cu2_2Sb is investigated by means of the first principles total energy calculations. The total charge densities for the lithiated products of the two compounds are presented. Based on these results the change in the bonding character on lithiation is discussed. Further, the isomer shift for InSb and Cu2_2Sb and there various lithiated products is reported. The average insertion/intercalation voltage and volume expansion for transitions from InSb to Li2_2InSb and Cu2_2Sb to Li2_2CuSb are calculated and found to be in good agreement with the experimental values. These findings help to resolve the controversy regarding the lithiation mechanism in InSb.Comment: 5 pages 3 figure

    Kaluza-Klein towers for real vector fields in flat space

    Full text link
    We consider a free real vector field propagating in a five dimensional flat space with its fifth dimension compactified either on a strip or on a circle and perform a Kalaza Klein reduction which breaks SO(4,1) invariance while reserving SO(3,1) invariance. Taking into account the Lorenz gauge condition, we obtain from the most general hermiticity conditions for the relevant operators all the allowed boundary conditions which have to be imposed on the fields in the extra-dimension. The physical Kaluza-Klein mass towers, which result in a four-dimensional brane, are determined in the different distinct allowed cases. They depend on the bulk mass, on the parameters of the boundary conditions and on the extra parameter present in the Lagrangian. In general, they involve vector states together with accompanying scalar states.Comment: 28 pages, 4 independent table

    Inducing charges and currents from extra dimensions

    Full text link
    In a particular variant of Kaluza-Klein theory, the so-called induced-matter theory (IMT), it is shown that any configuration of matter may be geometrically induced from a five-dimensional vacuum space. By using a similar approach we show that any distribution of charges and currents may also be induced from a five-dimensional vacuum space. Whereas in the case of IMT the geometry is Riemannian and the fundamental equations are the five-dimensional Einstein equations in vacuum, here we consider a Minkowskian geometry and the five-dimensional Maxwell equations in vacuum.Comment: 8 pages. Accepted for publication in Modern Physics Letters

    Universal properties of Fermi gases in arbitrary dimensions

    Full text link
    We consider spin-1/2 Fermi gases in arbitrary, integer or non-integer spatial dimensions, interacting via a Dirac delta potential. We first generalize the method of Tan's distributions and implement short-range boundary conditions to arbitrary dimension and we obtain a set of universal relations for the Fermi gas. Three-dimensional scattering under very general conditions of transversal confinement is described by an effectively reduced-dimensional scattering length, which we show depends on the three-dimensional scattering length in a universal way. Our formula for non-integer dimensions interpolates between the known results in integer dimensions 1, 2 and 3. Without any need to solve the associated multichannel scattering problem, we find that confinement-induced resonances occur in all dimensions different from D=2, while reduced-dimensional contacts, related to the tails of the momentum distributions, are connected to the three-dimensional contact by a correction factor of purely geometric origin.Comment: 6 pages, 0 figure

    XANES study of rare-earth valency in LRu4P12 (L = Ce and Pr)

    Full text link
    Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES spectrum suggests that Ce is mainly trivalent, but the 4f state strongly hybridizes with ligand orbitals. The band gap of CeRu4P12 seems to be formed by strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does not originate from Pr valence fluctuation.Comment: 4 page

    Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics: Spin 1

    Get PDF
    A previous evaluation of one-photon loop corrections to the energy-momentum tensor has been extended to particles with unit spin and speculations are presented concerning general properties of such forms.Comment: 21 pages, 1 Figur
    • …
    corecore