747 research outputs found
See a Black Hole on a Shoestring
The modes of vibration of hanging and partially supported strings provide
useful analogies to scalar fields travelling through spacetimes that admit
conformally flat spatial sections. This wide class of spacetimes includes
static, spherically symmetric spacetimes. The modes of a spacetime where the
scale factor depends as a power-law on one of the coordinates provide a useful
starting point and yield a new classification of these spacetimes on the basis
of the shape of the string analogue. The family of corresponding strings follow
a family of curves related to the cycloid, denoted here as hypercycloids (for
reasons that will become apparent). Like the spacetimes that they emulate these
strings exhibit horizons, typically at their bottommost points where the string
tension vanishes; therefore, hanging strings may provide a new avenue for the
exploration of the quantum mechanics of horizons.Comment: 5 pages, 1 figure, extensive changes to refect version accepted to
PR
Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems
Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou
systems, are generalized in two ways, namely, we take these theorems into d
spacetime dimensions (), and we also consider the very
interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids
with nonzero pressure. In particular within Newton-Coulomb theory of charged
gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is
generalized to arbitrary space dimensions. Then, we prove a new
theorem for charged gravitating fluid systems in which we find the condition
that the charge density and the matter density should obey. Within general
relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri
(1968) in four-dimensional spacetimes in rendered into arbitrary
dimensions. Then a theorem, new in and dimensions, for
Weyl-Guilfoyle systems, is stated and proved, in which we find the condition
that the charge density, the matter density, the pressure, and the
electromagnetic energy density should obey. This theorem comprises, as
particular cases, a theorem by Gautreau and Hoffman (1973) and results in four
dimensions by Guilfoyle (1999). Upon connection of an interior charged solution
to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in
d-dimensions), one is able to give a general definition for gravitational mass
for this kind of relativistic systems and find a mass relation with the several
quantities of the interior solution. It is also shown that for sources of
finite extent the mass is identical to the Tolman mass.Comment: 27 page
Black string and velocity frame dragging
We investigate velocity frame dragging with the boosted Schwarzschild black
string solution and the boosted Kaluza-Klein bubble solution, in which a
translational symmetry along the boosted -coordinate is implemented. The
velocity frame dragging effect can be nullified by the motion of an observer
using the boost symmetry along the coordinate if it is not compact.
However, in spacetime with the compact coordinate, we show that the effect
cannot be removed since the compactification breaks the global Lorentz boost
symmetry. As a result, the comoving velocity is dependent on and the
momentum parameter along the coordinate becomes an observer independent
characteristic quantity of the black string and bubble solutions. The dragging
induces a spherical ergo-region around the black string.Comment: 8 pages, no figure, some correction
Lithiation of InSb and CuSb : A Theoretical Investigation
In this work the mechanism of Li insertion/intercalation in the anode
materials InSb and CuSb is investigated by means of the first principles
total energy calculations. The total charge densities for the lithiated
products of the two compounds are presented. Based on these results the change
in the bonding character on lithiation is discussed. Further, the isomer shift
for InSb and CuSb and there various lithiated products is reported. The
average insertion/intercalation voltage and volume expansion for transitions
from InSb to LiInSb and CuSb to LiCuSb are calculated and found to
be in good agreement with the experimental values. These findings help to
resolve the controversy regarding the lithiation mechanism in InSb.Comment: 5 pages 3 figure
Kaluza-Klein towers for real vector fields in flat space
We consider a free real vector field propagating in a five dimensional flat
space with its fifth dimension compactified either on a strip or on a circle
and perform a Kalaza Klein reduction which breaks SO(4,1) invariance while
reserving SO(3,1) invariance. Taking into account the Lorenz gauge condition,
we obtain from the most general hermiticity conditions for the relevant
operators all the allowed boundary conditions which have to be imposed on the
fields in the extra-dimension. The physical Kaluza-Klein mass towers, which
result in a four-dimensional brane, are determined in the different distinct
allowed cases. They depend on the bulk mass, on the parameters of the boundary
conditions and on the extra parameter present in the Lagrangian. In general,
they involve vector states together with accompanying scalar states.Comment: 28 pages, 4 independent table
Inducing charges and currents from extra dimensions
In a particular variant of Kaluza-Klein theory, the so-called induced-matter
theory (IMT), it is shown that any configuration of matter may be geometrically
induced from a five-dimensional vacuum space. By using a similar approach we
show that any distribution of charges and currents may also be induced from a
five-dimensional vacuum space. Whereas in the case of IMT the geometry is
Riemannian and the fundamental equations are the five-dimensional Einstein
equations in vacuum, here we consider a Minkowskian geometry and the
five-dimensional Maxwell equations in vacuum.Comment: 8 pages. Accepted for publication in Modern Physics Letters
Universal properties of Fermi gases in arbitrary dimensions
We consider spin-1/2 Fermi gases in arbitrary, integer or non-integer spatial
dimensions, interacting via a Dirac delta potential. We first generalize the
method of Tan's distributions and implement short-range boundary conditions to
arbitrary dimension and we obtain a set of universal relations for the Fermi
gas. Three-dimensional scattering under very general conditions of transversal
confinement is described by an effectively reduced-dimensional scattering
length, which we show depends on the three-dimensional scattering length in a
universal way. Our formula for non-integer dimensions interpolates between the
known results in integer dimensions 1, 2 and 3. Without any need to solve the
associated multichannel scattering problem, we find that confinement-induced
resonances occur in all dimensions different from D=2, while
reduced-dimensional contacts, related to the tails of the momentum
distributions, are connected to the three-dimensional contact by a correction
factor of purely geometric origin.Comment: 6 pages, 0 figure
XANES study of rare-earth valency in LRu4P12 (L = Ce and Pr)
Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge
x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES
spectrum suggests that Ce is mainly trivalent, but the 4f state strongly
hybridizes with ligand orbitals. The band gap of CeRu4P12 seems to be formed by
strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr
exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We
find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does
not originate from Pr valence fluctuation.Comment: 4 page
Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics: Spin 1
A previous evaluation of one-photon loop corrections to the energy-momentum
tensor has been extended to particles with unit spin and speculations are
presented concerning general properties of such forms.Comment: 21 pages, 1 Figur
- …