49,302 research outputs found
The magnetic dipole transitions in the binding system
The magnetic dipole transitions between the vector mesons and their
relevant pseudoscalar mesons (, , , ,
and etc, the binding states of system) of
the family are interesting. To see the `hyperfine' splitting due to
spin-spin interaction is an important topic for understanding the spin-spin
interaction and the spectrum of the the binding system. The
knowledge about the magnetic dipole transitions is also very useful for
identifying the vector boson mesons experimentally, whose masses are
just slightly above the masses of their relevant pseudoscalar mesons
accordingly. Considering the possibility to observe the vector mesons via the
transitions at factory and the potentially usages of the theoretical
estimate on the transitions, we fucus our efforts on calculating the magnetic
dipole transitions, i.e. precisely to calculate the rates for the transitions
such as decays and , and particularly
work in the Behte-Salpeter framework. In the estimate, as a typical example, we
carefully investigate the dependance of the rate
on the mass difference as well.Comment: 10 pages, 2 figures, 1 tabl
A general condition of inflationary cosmology on trans-Planckian physics
We consider a more general initial condition satisfying the minimal
uncertainty relationship. We calculate the power spectrum of a simple model in
inflationary cosmology. The results depend on perturbations generated below a
fundamental scale, e.g. the Planck scale.Comment: 7 pages, References adde
Search for via the transition at LHCb and factory
It is interesting to study the characteristics of the whole family of
which contains two different heavy flavors. LHC and the proposed factory
provide an opportunity because a large database on the family will be
achieved. and its excited states can be identified via their decay modes.
As suggested by experimentalists, is not easy to be
clearly measured, instead, the trajectories of and occurring in
the decay of () can be unambiguously
identified, thus the measurement seems easier and more reliable, therefore this
mode is more favorable at early running stage of LHCb and the proposed
factory. In this work, we calculate the rate of
in terms of the QCD multipole-expansion and the numerical results indicate that
the experimental measurements with the luminosity of LHC and factory are
feasible.Comment: 12 pages, 1 figures and 4 tables, acceptted by SCIENCE CHINA Physics,
Mechanics & Astronomy (Science in China Series G
Extraction of Plumes in Turbulent Thermal Convection
We present a scheme to extract information about plumes, a prominent coherent
structure in turbulent thermal convection, from simultaneous local velocity and
temperature measurements. Using this scheme, we study the temperature
dependence of the plume velocity and understand the results using the equations
of motion. We further obtain the average local heat flux in the vertical
direction at the cell center. Our result shows that heat is not mainly
transported through the central region but instead through the regions near the
sidewalls of the convection cell.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
From Canonical to Enhanced Extra Mixing in Low-Mass Red Giants: Tidally Locked Binaries
Stellar models which incorporate simple diffusion or shear induced mixing are
used to describe canonical extra mixing in low mass red giants of low and solar
metallicity. These models are able to simultaneously explain the observed Li
and CN abundance changes along upper red giant branch (RGB) in field
low-metallicity stars and match photometry, rotation and carbon isotopic ratios
for stars in the old open cluster M67. The shear mixing model requires that
main sequence (MS) progenitors of upper RGB stars possessed rapidly rotating
radiative cores and that specific angular momentum was conserved in each of
their mass shells during their evolution. We surmise that solar-type stars will
not experience canonical extra mixing on the RGB because their more efficient
MS spin-down resulted in solid-body rotation, as revealed by helioseismological
data for the Sun. Thus, RGB stars in the old, high metallicity cluster NGC 6791
should show no evidence for mixing in their carbon isotopic ratios.
We develop the idea that canonical extra mixing in a giant component of a
binary system may be switched to its enhanced mode with much faster and
somewhat deeper mixing as a result of the giant's tidal spin-up. This scenario
can explain photometric and composition peculiarities of RS CVn binaries. The
tidally enforced enhanced extra mixing might contribute to the star-to-star
abundance variations of O, Na and Al in globular clusters. This idea may be
tested with observations of carbon isotopic ratios and CN abundances in RS CVn
binaries.Comment: 47 pages, 19 figures, accepted for publication in Ap
Electron Transport Through Molecules: Self-consistent and Non-self-consistent Approaches
A self-consistent method for calculating electron transport through a
molecular device is proposed. It is based on density functional theory
electronic structure calculations under periodic boundary conditions and
implemented in the framework of the nonequilibrium Green function approach. To
avoid the substantial computational cost in finding the I-V characteristic of
large systems, we also develop an approximate but much more efficient
non-self-consistent method. Here the change in effective potential in the
device region caused by a bias is approximated by the main features of the
voltage drop. As applications, the I-V curves of a carbon chain and an aluminum
chain sandwiched between two aluminum electrodes are calculated -- two systems
in which the voltage drops very differently. By comparing to the
self-consistent results, we show that this non-self-consistent approach works
well and can give quantitatively good results.Comment: 11 pages, 10 figure
- …
