35,931 research outputs found

    Extremely High Energy Neutrinos and their Detection

    Get PDF
    We discuss in some detail the production of extremely high energy (EHE) neutrinos with energies above 10^18 eV. The most certain process for producing such neutrinos results from photopion production by EHE cosmic rays in the cosmic background photon field. However, using assumptions for the EHE cosmic ray source evolution which are consistent with results from the deep QSO survey in the radio and X-ray range, the resultant flux of neutrinos from this process is not strong enough for plausible detection. A measurable flux of EHE neutrinos may be present, however, if the highest energy cosmic rays which have recently been detected well beyond 10^20 eV are the result of the annihilation of topological defects which formed in the early universe. Neutrinos resulting from such decays reach energies of the grand unification (GUT) scale, and collisions of superhigh energy neutrinos with the cosmic background neutrinos initiate neutrino cascading which enhances the EHE neutrino flux at Earth. We have calculated the neutrino flux including this cascading effect for either massless or massive neutrinos and we find that these fluxes are conceivably detectable by air fluorescence detectors now in development. The neutrino-induced showers would be recognized by their starting deep in the atmosphere. We evaluate the feasibility of detecting EHE neutrinos this way using air fluorescence air shower detectors and derive the expected event rate. Other processes for producing deeply penetrating air showers constitute a negligible background.Comment: 33 pages, including 12 eps figures, LaTe

    A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China

    Get PDF
    Cosmic rays interact with the Earth's atmosphere to produce 14^{14}C, which can be absorbed by trees. Therefore, rapid increases of 14^{14}C in tree rings can be used to probe previous cosmic-ray events. By this method, three 14^{14}C rapidly increasing events have been found. Plausible causes of these events include large solar proton events, supernovae or short gamma-ray bursts. However, due to the lack of measurements of 14^{14}C by year, the occurrence frequency of such 14^{14}C rapidly increasing events is poorly known. In addition, rapid increases may be hidden in the IntCal13 data with five-year resolution. Here we report the result of 14^{14}C measurements using an ancient buried tree during the period between BC 3388 and 3358. We find a rapid increase of about 9\textperthousand~ in the 14^{14}C content from BC 3372 to BC 3371. We suggest that this event could originate from a large solar proton event.Comment: 23 pages, 3 figures, 2 tables, published in Nature Communication

    Analytical and numerical studies of central galactic outflows powered by tidal disruption events -- a model for the Fermi bubbles?

    Full text link
    Capture and tidal disruption of stars by the supermassive black hole in the Galactic center (GC) should occur regularly. The energy released and dissipated by this processes will affect both the ambient environment of the GC and the Galactic halo. A single star of super-Eddington eruption generates a subsonic out ow with an energy release of more than 105210^{52} erg, which still is not high enough to push shock heated gas into the halo. Only routine tidal disruption of stars near the GC can provide enough cumulative energy to form and maintain large scale structures like the Fermi Bubbles. The average rate of disruption events is expected to be 10410^{-4} ~ 10510^{-5} yr1^{-1}, providing the average power of energy release from the GC into the halo of dW/dt ~ 3*1041^{41} erg/s, which is needed to support the Fermi Bubbles. The GC black hole is surrounded by molecular clouds in the disk, but their overall mass and filling factor is too low to stall the shocks from tidal disruption events significantly. The de facto continuous energy injection on timescales of Myr will lead to the propagation of strong shocks in a density stratified Galactic halo and thus create elongated bubble-like features, which are symmetric to the Galactic midplane.Comment: 11 pages, 5 figures. The title and abstract have been changed. Accepted by Astrophysical Journa

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Genuine multipartite nonlocality in the one-dimensional ferromagnetic spin-1/2 chain

    Full text link
    Genuine multipartite entanglement has been found in some spin chain systems. However, genuine multipartite nonlocality, which is much rarer than genuine multipartite entanglement, has never been found in any spin chain system. Here we present genuine multipartite nonlocality in a spin chain system. After introducing the definition of genuine multipartite nonlocality and a multipartite Bell-type inequality, we construct a group of joint measurements for the inequality in a one-dimensional ferromagnetic NN-qubit chain with nearest-neighbor XXZ interaction, and many violations to the inequality have been found. The violations do indicate that genuine multipartite nonlocality exists in this ferromagnetic spin-1/2 chain system. Last but not least, we also calculate genuine multipartite entanglement concurrence in the same spin chain to demonstrate the difference and relationship between genuine multipartite nonlocality and genuine multipartite entanglement.Comment: 7 pages, 5 figure

    Gamma-ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly-Magnetized Millisecond Pulsar

    Full text link
    We investigate the consequences of a continuously injecting central engine on the gamma-ray burst afterglow emission, focusing more specifically on a highly-magnetized millisecond pulsar engine. For initial pulsar parameters within a certain region of the parameter space, the afterglow lightcurves are predicted to show a distinctive achromatic bump feature, the onset and duration of which range from minutes to months, depending on the pulsar and the fireball parameters. The detection of or upper limits on such features would provide constraints on the burst progenitor and on magnetar-like central engine models. An achromatic bump such as that in GRB 000301C afterglow may be caused by a millisecond pulsar with P0=3.4 millisecond and Bp=2.7e14 Gauss.Comment: 5 pages, emulateapj style, to appear in ApJ Letters, updated with the accepted version, a few corrections are mad
    corecore