16,538 research outputs found

    Majorana fermions in s-wave noncentrosymmetric superconductor with Rashba and Dresselhaus (110) spin-orbit couplings

    Full text link
    The asymmetric spin-orbit (SO) interactions play a crucial role in realizing topological phases in noncentrosymmetric superconductor (NCS).We investigate the edge states and the vortex core states in s-wave NCS with Rashba and Dresselhaus (110) SO couplings by both numerical and analytical methods. In particular, we demonstrate that there exists a novel semimetal phase characterized by the flat Andreev bound states in the phase diagram of the s-wave Dresselhaus NCS which supports the emergence of Majorana fermion (MF). The flat dispersion implies a peak in the density of states which has a clear experimental signature in the tunneling conductance measurements and the MFs proposed here should be experimentally detectable

    Spin squeezing: transforming one-axis-twisting into two-axis-twisting

    Full text link
    Squeezed spin states possess unique quantum correlation or entanglement that are of significant promises for advancing quantum information processing and quantum metrology. In recent back to back publications [C. Gross \textit{et al, Nature} \textbf{464}, 1165 (2010) and Max F. Riedel \textit{et al, Nature} \textbf{464}, 1170 (2010)], reduced spin fluctuations are observed leading to spin squeezing at -8.2dB and -2.5dB respectively in two-component atomic condensates exhibiting one-axis-twisting interactions (OAT). The noise reduction limit for the OAT interaction scales as 1/N2/3\propto 1/{N^{2/3}}, which for a condensate with N103N\sim 10^3 atoms, is about 100 times below standard quantum limit. We present a scheme using repeated Rabi pulses capable of transforming the OAT spin squeezing into the two-axis-twisting type, leading to Heisenberg limited noise reduction 1/N\propto 1/N, or an extra 10-fold improvement for N103N\sim 10^3.Comment: 4 pages, 3 figure

    The effects of surface finish and grain size on the strength of sintered silicon carbide

    Get PDF
    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding

    Does the mass of a black hole decrease due to the accretion of phantom energy

    Full text link
    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the Big Rip occurs, violating the Cosmic Censorship Conjecture.Comment: 12 pages, 5 figures. PRD accepte

    A qubit strongly-coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Full text link
    We investigate the spontaneous emission spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. The qubit-cavity coupling strength is varied from weak, to strong, even to lower bound of the ultra-strong. For the weak-coupling case, the spontaneous emission spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Increasing the qubit-cavity coupling increases the asymmetry (the positions about the qubit energy spacing and heights of the two peaks) of the two spontaneous emission peaks (which are related to the vacuum Rabi splitting) more. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks becomes larger, when the qubit-cavity coupling strength is increased. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted from the same case of the low-frequency bath, when the qubit is strongly coupled to the cavity. Increasing the qubit-cavity coupling to the lower bound of the ultra-strong regime, the height asymmetry of the left and right peak heights are inverted, which is consistent with the same case of low-frequency bath, only relatively weak. Therefore, our results explicitly show how the height asymmetry in the spontaneous emission spectrum peaks depends not only on the qubit-cavity coupling, but also on the type of intrinsic noise experienced by the qubit.Comment: 10pages, 5 figure

    A Morphological Diagnostic for Dynamical Evolution of Wolf-Rayet Bubbles

    Get PDF
    We have observed H-alpha and [OIII] emission from eight of the most well defined Wolf-Rayet ring nebulae in the Galaxy. We find that in many cases the outermost edge of the [OIII] emission leads the H-alpha emission. We suggest that these offsets, when present, are due to the shock from the Wolf-Rayet bubble expanding into the circumstellar envelope. Thus, the details of the WR bubble morphology at H-alpha and [OIII] can then be used to better understand the physical condition and evolutionary stage of the nebulae around Wolf-Rayet stars, as well as place constraints on the nature of the stellar progenitor and its mass loss history.Comment: 11 pages, LaTex, 8 figures, accepted for publication in AJ, November 200

    Structure of Supergiant Shells in the Large Magellanic Cloud

    Full text link
    Nine supergiant shells (SGSs) have been identified in the Large Magellanic Cloud (LMC) based on H-alpha images, and twenty-three SGSs have been reported based on HI 21-cm line observations, but these sets do not always identify the same structures. We have examined the physical structure of the optically identified SGSs using HI channel maps and P-V diagrams to analyze the gas kinematics. There is good evidence for seven of the nine optically identified SGSs to be true shells. Of these seven H-alpha SGSs, four are the ionized inner walls of HI SGSs, while three are an ionized portion of a larger and more complex HI structure. All of the H-alpha SGSs are identified as such because they have OB associations along the periphery or in the center, with younger OB associations more often found along the periphery. After roughly 12 Myrs, if no new OB associations have been formed a SGS will cease to be identifiable at visible wavelengths. Thus, the presence and location of ionizing sources is the main distinction between shells seen only in HI and those also seen in H-alpha. Based on our analysis, H-alpha observations alone cannot unambiguously identify SGSs, especially in distant galaxies.Comment: 26 pages, 16 figures, accepted for publication in the Astrophysical Journal Supplemen

    Solitons in a trapped spin-1 atomic condensate

    Full text link
    We numerically investigate a particular type of spin solitons inside a trapped atomic spin-1 Bose-Einstein condensate (BEC) with ferromagnetic interactions. Within the mean field theory approximation, our study of the solitonic dynamics shows that the solitonic wave function, its center of mass motion, and the local spin evolutions are stable and are intimately related to the domain structures studied recently in spin-1 87^{87}Rb condensates. We discuss a rotating reference frame wherein the dynamics of the solitonic local spatial spin distribution become time independent.Comment: 8 pages, 8 color eps figure
    corecore