47,687 research outputs found

    Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors

    Full text link
    Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi_2Sr_2CaCu_2O_{8 \pm \delta} superconductors. For underdoped superconductors, short range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature T_c, the system exhibits a sharp Raman resonance of B_{1g} symmetry and energy of 75 meV and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at T_c produces a global SC state.Comment: 6 pages, 4 color figures, PDF forma

    Scattering Rule in Soliton Cellular Automaton associated with Crystal Base of Uq(D4(3))U_q(D_4^{(3)})

    Full text link
    In terms of the crystal base of a quantum affine algebra Uq(g)U_q(\mathfrak{g}), we study a soliton cellular automaton (SCA) associated with the exceptional affine Lie algebra g=D4(3)\mathfrak{g}=D_4^{(3)}. The solitons therein are labeled by the crystals of quantum affine algebra Uq(A1(1))U_q(A_1^{(1)}). The scatteing rule is identified with the combinatorial RR matrix for Uq(A1(1))U_q(A_1^{(1)})-crystals. Remarkably, the phase shifts in our SCA are given by {\em 3-times} of those in the well-known box-ball system.Comment: 25 page

    Separable states and the geometric phases of an interacting two-spin system

    Full text link
    It is known that an interacting bipartite system evolves as an entangled state in general, even if it is initially in a separable state. Due to the entanglement of the state, the geometric phase of the system is not equal to the sum of the geometric phases of its two subsystems. However, there may exist a set of states in which the nonlocal interaction does not affect the separability of the states, and the geometric phase of the bipartite system is then always equal to the sum of the geometric phases of its subsystems. In this paper, we illustrate this point by investigating a well known physical model. We give a necessary and sufficient condition in which a separable state remains separable so that the geometric phase of the system is always equal to the sum of the geometric phases of its subsystems.Comment: 13 page

    Probing Majorana neutrinos in rare K and D, D_s, B, B_c meson decays

    Full text link
    We study lepton number violating decays of charged K, D, D_s, B and B_c mesons of the form M^+\to {M'}^-\ell^+\ell^+, induced by the existence of Majorana neutrinos. These processes provide information complementary to neutrinoless double nuclear beta decays, and are sensitive to neutrino masses and lepton mixing. We explore neutrino mass ranges m_N from below 1 eV to several hundred GeV. We find that in many cases the branching ratios are prohibitively small, however in the intermediate range m_\pi < m_N < m_{B_c}, in specific channels and for specific neutrino masses, the branching ratios can be at the reach of high luminosity experiments like those at the LHC-b and future Super flavor-factories, and can provide bounds on the lepton mixing parameters.Comment: 25 page

    Origins of the Isospin Violation of Dark Matter Interactions

    Full text link
    Light dark matter (DM) with a large DM-nucleon spin-independent cross section and furthermore proper isospin violation (ISV) fn/fp0.7f_n/f_p\approx-0.7 may provide a way to understand the confusing DM direct detection results. Combing with the stringent astrophysical and collider constraints, we systematically investigate the origin of ISV first via general operator analyses and further via specifying three kinds of (single) mediators: A light ZZ' from chiral U(1)XU(1)_X, an approximate spectator Higgs doublet (It can explain the W+jjW+jj anomaly simultaneously) and color triplets. In addition, although ZZ' from an exotic U(1)XU(1)_X mixing with U(1)YU(1)_Y generating fn=0f_n=0, we can combine it with the conventional Higgs to achieve proper ISV. As a concrete example, we propose the U(1)XU(1)_X model where the U(1)XU(1)_X charged light sneutrino is the inelastic DM, which dominantly annihilates to light dark states such as ZZ' with sub-GeV mass. This model can address the recent GoGeNT annual modulation consistent with other DM direct detection results and free of exclusions.Comment: References added and English greatly improve

    Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks

    Full text link
    We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range T0=104107.6T_0=10^4-10^{7.6}K and shock Mach numbers spanning Ms=2.4133M_s=2.4-133. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc \gsim 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies 50\sim 50%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks (MsafewM_s \sim {\rm a few}). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10, 2005

    Polarization immunity of magnetoresistivity response under Microwave excitation

    Full text link
    We analyze theoretically the dependence of the microwave polarization sate and sense on the magnetoresistivity response of two-dimensional electron systems. Linear and circular polarization have been considered with different senses and directions. We discuss the polarization dependence of the longitudinal magnetoresistivity and propose an explanation for the experimentally observed polarization immunity, i.e., resistivity oscillations and zero resistance state regions are unaffected by the sense of circular polarization or by the direction of microwave electric field.Comment: 4 pages and 1 figur
    corecore