64,498 research outputs found

    Searching for high-KK isomers in the proton-rich A∼80A\sim80 mass region

    Get PDF
    Configuration-constrained potential-energy-surface calculations have been performed to investigate the KK isomerism in the proton-rich A∼80A\sim80 mass region. An abundance of high-KK states are predicted. These high-KK states arise from two and four-quasi-particle excitations, with Kπ=8+K^{\pi}=8^{+} and Kπ=16+K^{\pi}=16^{+}, respectively. Their excitation energies are comparatively low, making them good candidates for long-lived isomers. Since most nuclei under studies are prolate spheroids in their ground states, the oblate shapes of the predicted high-KK states may indicate a combination of KK isomerism and shape isomerism

    Optimal Controlled Teleportation

    Full text link
    We give the analytic expressions of maximal probabilities of successfully controlled teleportating an unknown qubit via every kind of tripartite states. Besides, another kind of localizable entanglement is also determined. Furthermore, we give the sufficient and necessary condition that a three-qubit state can be collapsed to an EPR pair by a measurement on one qubit, and characterize the three-qubit states that can be used as quantum channel for controlled teleporting a qubit of unknown information with unit probability and with unit fidelity.Comment: 4 page

    Magnetophoresis of nonmagnetic particles in ferrofluids

    Get PDF
    Ferrofluids containing nonmagnetic particles are called inverse ferrofluids. On the basis of the Ewald-Kornfeld formulation and the Maxwell-Garnett theory, we theoretically investigate the magnetophoretic force exerting on the nonmagnetic particles in inverse ferrofluids due to the presence of a nonuniform magnetic field, by taking into account the structural transition and long-range interaction. We numerically demonstrate that the force can be adjusted by choosing appropriate lattices, volume fractions, geometric shapes, and conductivities of the nonmagnetic particles, as well as frequencies of external magnetic fields.Comment: 24 pages, 7 figure

    Probabilistic teleportation of unknown two-particle state via POVM

    Full text link
    We propose a scheme for probabilistic teleportation of unknown two-particle state with partly entangled four-particle state via POVM. In this scheme the teleportation of unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.Comment: 5 pages, no figur

    X(1835): A Natural Candidate of η′\eta^\prime's Second Radial Excitation

    Full text link
    Recently BES collaboration observed one interesting resonance X(1835). We point out that its mass, total width, production rate and decay pattern favor its assignment as the second radial excitation of η′\eta^\prime meson very naturally

    A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties

    Full text link
    We propose a simultaneous quantum secure direct communication scheme between one party and other three parties via four-particle GHZ states and swapping quantum entanglement. In the scheme, three spatially separated senders, Alice, Bob and Charlie, transmit their secret messages to a remote receiver Diana by performing a series local operations on their respective particles according to the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell measurement results, Diana can infer the secret messages. If a perfect quantum channel is used, the secret messages are faithfully transmitted from Alice, Bob and Charlie to Diana via initially shared pairs of four-particle GHZ states without revealing any information to a potential eavesdropper. As there is no transmission of the qubits carrying the secret message in the public channel, it is completely secure for the direct secret communication. This scheme can be considered as a network of communication parties where each party wants to communicate secretly with a central party or server.Comment: 4 pages, no figur

    Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol

    Full text link
    The participant attack is the most serious threat for quantum secret-sharing protocols. We present a method to analyze the security of quantum secret-sharing protocols against this kind of attack taking the scheme of Hillery, Buzek, and Berthiaume (HBB) [Phys. Rev. A 59 1829 (1999)] as an example. By distinguishing between two mixed states, we derive the necessary and sufficient conditions under which a dishonest participant can attain all the information without introducing any error, which shows that the HBB protocol is insecure against dishonest participants. It is easy to verify that the attack scheme of Karlsson, Koashi, and Imoto [Phys. Rev. A 59, 162 (1999)] is a special example of our results. To demonstrate our results further, we construct an explicit attack scheme according to the necessary and sufficient conditions. Our work completes the security analysis of the HBB protocol, and the method presented may be useful for the analysis of other similar protocols.Comment: Revtex, 7 pages, 3 figures; Introduction modifie
    • …
    corecore