37 research outputs found

    Acromegaly and gigantism in the medical literature. Case descriptions in the era before and the early years after the initial publication of Pierre Marie (1886)

    Get PDF
    In 1886 Pierre Marie used the term “acromegaly” for the first time and gave a full description of the characteristic clinical picture. However several others had already given clear clinical descriptions before him and sometimes had given the disease other names. After 1886, it gradually became clear that pituitary enlargement (caused by a pituitary adenoma) was the cause and not the consequence of acromegaly, as initially thought. Pituitary adenomas could be found in the great majority of cases. It also became clear that acromegaly and gigantism were the same disease but occurring at different stages of life and not different diseases as initially thought. At the end of the 19th and beginning of the 20th century most information was derived from case descriptions and post-mortem examinations of patients with acromegaly or (famous) patients with gigantism. The stage was set for further research into the pathogenesis, diagnosis and therapy of acromegaly and gigantism

    Phagocytosis of Streptococcus pyogenes by all-trans retinoic acid-differentiated HL-60 cells: roles of azurophilic granules and NADPH oxidase.

    Get PDF
    BACKGROUND: New experimental approaches to the study of the neutrophil phagosome and bacterial killing prompted a reassessment of the usefulness of all-trans retinoic acid (ATRA)-differentiated HL-60 cells as a neutrophil model. HL-60 cells are special in that they possess azurophilic granules while lacking the specific granules with their associated oxidase components. The resulting inability to mount an effective intracellular respiratory burst makes these cells more dependent on other mechanisms when killing internalized bacteria. METHODOLOGY/PRINCIPAL FINDINGS: In this work phagocytosis and phagosome-related responses of ATRA-differentiated HL-60 cells were compared to those earlier described in human neutrophils. We show that intracellular survival of wild-type S. pyogenes bacteria in HL-60 cells is accompanied by inhibition of azurophilic granule-phagosome fusion. A mutant S. pyogenes bacterium, deficient in M-protein expression, is, on the other hand, rapidly killed in phagosomes that avidly fuse with azurophilic granules. CONCLUSIONS/SIGNIFICANCE: The current data extend our previous findings by showing that a system lacking in oxidase involvement also indicates a link between inhibition of azurophilic granule fusion and the intraphagosomal fate of S. pyogenes bacteria. We propose that differentiated HL-60 cells can be a useful tool to study certain aspects of neutrophil phagosome maturation, such as azurophilic granule fusion
    corecore