13,060 research outputs found

    The electroluminescent decay mechanism of rare-earth ions in OLEDs based on a terbium complex

    Get PDF
    The organic light-emitting diodes (OLEDs) based on terbium (Tb) complexes show sharp green emission spectrum with excellent color purity. However, the brightness of Tb-OLEDs is generally weak. Here, the electroluminescent (EL) decay mechanism of TB-OLEDs is studied by arbitrarily using tris-(1-phenyl-3-methyl-4-isobutyryl-5-pyrozolone)-bis(triphenyl phosphine oxide) terbium as the emitting layer. The device shows high EL efficiency at low current density but rapid reduction of device efficiency at higher current density. The transient EL is investigated for understanding the decay process of excited Tb 3+ ions. Together with theoretical studies, exciton quenching is proposed to explain the decay of the Tb-OLEDs which is important for optimizing and engineering the material and device structures. The EL from the mixed layer of the Tb and europium (Eu) complexes is also studied. We find that the EL performance and transient decay of the excited Tb ions are modified by energy transfer from Tb to Eu in the OLEDs. © 2007 IEEE.published_or_final_versio

    Many Commercially Available Antibodies for Detection of CHOP Expression as a Marker of Endoplasmic Reticulum Stress Fail Specificity Evaluation

    Get PDF
    Endoplasmic reticulum (ER) stress contributes to beta cell death in type 2 diabetes (T2DM). ER stress is characterized by increased level of ER stress markers such as C/EBP homologous protein (CHOP). Activation of CHOP leads to its translocation into the nucleus, where it induces cell death. We previously reported nuclear CHOP in pancreatic sections from T2DM, but not T1DM, and in human islet amyloid polypeptide (IAPP) transgenic rodent pancreatic sections. These studies underscore the importance of studying nuclear CHOP. We have observed inconsistency in the detection of CHOP antibodies reported in the literature and also in our own experiments. To investigate the specificity of CHOP antibodies, we first induced ER stress by tunicamycin in rat insulinoma (INS) cells and prepared nuclear and cytoplasmic fractions. Then we examined CHOP expression by Western blotting and immunocytochemistry using seven commercially available CHOP antibodies in INS cells and human IAPP (h-IAPP) transgenic rodent pancreatic tissue. These studies show that three commercially available CHOP antibodies out of seven tested were non-specific. In conclusion, we give recommendations for CHOP antibody selection and methods to verify CHOP antibody specificity. Also, we propose that the authors report the catalog and lot numbers of the CHOP antibodies used

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone

    Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State

    Get PDF
    Superhydrophobic pillar arrays, which can generate the droplet pancake bouncing phenomenon with reduced liquid-solid contact time, have huge application prospects in anti-icing of aircraft wings from freezing rain. However, the previously reported pillar arrays, suitable for obtaining pancake bouncing, have a diameter ≤100 μm and height-diameter ratio >10, which are difficult to fabricate over a large area. Here, we have systematically studied the influence of the dimension of the superhydrophobic pillar arrays on the bouncing dynamics of water droplets. We show that the typical pancake bouncing with 57.8% reduction in contact time with the surface was observed on the superhydrophobic pillar arrays with 1.05 mm diameter, 0.8 mm height, and 0.25 mm space. Such pillar arrays with millimeter diameter and <1 height-diameter ratio can be easily fabricated over large areas. Further, a simple replication-spraying method was developed for the large-area fabrication of the superhydrophobic pillar arrays to induce pancake bouncing. No sacrificial layer was needed to reduce the adhesion in the replication processes. Since the bouncing dynamics were rather sensitive to the space between the pillars, a method to control the contact time, bouncing shape, horizontal bouncing direction, and reversible switch between pancake bouncing and conventional bouncing was realized by adjusting the inclination angle of the shape memory polymer pillars

    Power-free water pump based on a superhydrophobic surface: generation of a mushroom-like jet and anti-gravity long-distance transport

    Get PDF
    Spontaneous anti-gravitational transportation of liquids across long distances has been widely discovered in nature, such as water transportation from the root to the crown of a tree. However, artificial liquid delivery remains a challenge. In this work, a new power-free pump composed of a superhydrophobic plate with a pore mounted on a leak-proof cylindrical container filled with water is presented for sustained anti-gravity and long distance transport. Water droplets can be spontaneously captured through the pore by the lower water column, forming a mushroom-like jet due to the energy transition from surface energy to kinetic energy. The spontaneously increased inside pressure in the container will push the water out, through another thin tube, realizing the energy transition from surface energy to gravitational potential energy. The dynamic driving and moving model of the pivotal mushroom-like jet were analyzed. The maximum transport height and transport abilities of the water pump were also discussed. The results show that Laplace pressure is the main driving pressure of the mushroom-like jet and that the developed power-free pump can effectively transport water to over 100 mm in height with an average transport speed of 4500 μL h−1, showing potential for application in microfluidic systems and medical devices where micropumps are needed

    High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester

    Get PDF
    Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)

    Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing

    Get PDF
    Superhydrophobic conical pillars have great industrial application potential in, for example, anti-icing of aircraft wings and protecting high voltage transmission lines from freezing rain because of their droplet pancake bouncing phenomenon, which is recognized to further reduce the liquid-solid contact time. However, there are still no methods that can fabricate robust superhydrophobic conical pillars in large scale. Here, a mold replication technology was proposed to realize the large-scale fabrication of superhydrophobic conical pillars with high mechanical strength. An Al mold with intensive conical holes decorated with micro/nanometer-scale structures was fabricated by nanosecond laser drilling and HCl etching. The conical shape originated from a near Gaussian spatial distribution of the energy and temperature in the radial direction in the laser drilling processes. Robust superhydrophobic conical pillars from syringe needle shape to straight conical pillar shape were easily fabricated through replication from the Al mold without any extra spray of superhydrophobic nanoparticles. It was also found that although all superhydrophobic conical pillars with different shapes could generate the droplet pancake bouncing, the shape had a great influence on the critical bottom space and the critical Weber number (We) to generate pancake bouncing. The pancake bouncing with the shortest contact time of a 68.5% reduction appeared on superhydrophobic straight conical pillars with the shape angle of 180°. Overcoming the difficulties in the large-scale fabrication and robustness of superhydrophobic conical pillars will promote practical applications of the droplet pancake bouncing phenomenon

    Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework

    Get PDF
    Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds

    Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways

    Get PDF
    Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS

    The effects of supernovae on the dynamical evolution of binary stars and star clusters

    Full text link
    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s1^{-1}) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin and Athem Alsabti. This version replaces an earlier version that contained several typo
    corecore