1,711 research outputs found

    Spin-Correlation Coefficients and Phase-Shift Analysis for p+3^3He Elastic Scattering

    Full text link
    Angular Distributions for the target spin-dependent observables A0y_{0y}, Axx_{xx}, and Ayy_{yy} have been measured using polarized proton beams at several energies between 2 and 6 MeV and a spin-exchange optical pumping polarized 3^3He target. These measurements have been included in a global phase-shift analysis following that of George and Knutson, who reported two best-fit phase-shift solutions to the previous global p+3^3He elastic scattering database below 12 MeV. These new measurements, along with measurements of cross-section and beam-analyzing power made over a similar energy range by Fisher \textit{et al.}, allowed a single, unique solution to be obtained. The new measurements and phase-shifts are compared with theoretical calculations using realistic nucleon-nucleon potential models.Comment: Submitted to Phys. Rev.

    Extracting W Boson Couplings from the e+e−e^{+}e^{-} Production of Four Leptons

    Full text link
    We consider the processes e+e−→ℓ+ℓ′−ννˉ′e^{+}e^{-}\rightarrow \ell^{+} \ell^{\prime -}\nu \bar{\nu}^{\prime}, including all possible charged lepton combinations, with regard to measuring parameters characterizing the WW boson. We calculate at what level these processes can be used to measure anamolous triple-boson vertice coupling parameters for the cases of e+e−e^{+}e^{-} colliders at 500 GeVGeV and 1 TeVTeV center of mass energies.Comment: 13 pages,OCIP/C-93-

    The upper triangular solutions to the three-state constant quantum Yang-Baxter equation

    Full text link
    In this article we present all nonsingular upper triangular solutions to the constant quantum Yang-Baxter equation Rj1j2k1k2Rk1j3l1k3Rk2k3l2l3=Rj2j3k2k3Rj1k3k1l3Rk1k2l1l2R_{j_1j_2}^{k_1k_2}R_{k_1j_3}^{l_1k_3}R_{k_2k_3}^{l_2l_3}= R_{j_2j_3}^{k_2k_3}R_{j_1k_3}^{k_1l_3}R_{k_1k_2}^{l_1l_2} in the three state case, i.e. all indices ranging from 1 to 3. The upper triangular ansatz implies 729 equations for 45 variables. Fortunately many of the equations turned out to be simple allowing us to start breaking the problem into smaller ones. In the end we had a total of 552 solutions, but many of them were either inherited from two-state solutions or subcases of others. The final list contains 35 nontrivial solutions, most of them new.Comment: 24 Pages in LaTe

    Unraveling the Nature of Charge Excitations in La2_2CuO4_4 with Momentum-Resolved Cu KK-edge Resonant Inelastic X-ray Scattering

    Full text link
    Results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu KK-edge resonant inelastic X-ray scattering (RIXS) from La2_{2}CuO4_{4}. The model includes electronic orbitals necessary to highlight non-local Zhang-Rice singlet, charge transfer and dd-dd excitations, as well as states with apical oxygen 2pzp_z character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multi-orbital character of RIXS profiles in the energy transfer range 1-6 eV.Comment: Original: 4.5 pages. Replaced: 4 pages and 4 figures with updated content and reference

    The Yang-Baxter equation for PT invariant nineteen vertex models

    Full text link
    We study the solutions of the Yang-Baxter equation associated to nineteen vertex models invariant by the parity-time symmetry from the perspective of algebraic geometry. We determine the form of the algebraic curves constraining the respective Boltzmann weights and found that they possess a universal structure. This allows us to classify the integrable manifolds in four different families reproducing three known models besides uncovering a novel nineteen vertex model in a unified way. The introduction of the spectral parameter on the weights is made via the parameterization of the fundamental algebraic curve which is a conic. The diagonalization of the transfer matrix of the new vertex model and its thermodynamic limit properties are discussed. We point out a connection between the form of the main curve and the nature of the excitations of the corresponding spin-1 chains.Comment: 43 pages, 6 figures and 5 table

    Ultracold Neutron Production in a Pulsed Neutron Beam Line

    Full text link
    We present the results of an Ultracold neutron (UCN) production experiment in a pulsed neutron beam line at the Los Alamos Neutron Scattering Center. The experimental apparatus allows for a comprehensive set of measurements of UCN production as a function of target temperature, incident neutron energy, target volume, and applied magnetic field. However, the low counting statistics of the UCN signal expected can be overwhelmed by the large background associated with the scattering of the primary cold neutron flux that is required for UCN production. We have developed a background subtraction technique that takes advantage of the very different time-of-flight profiles between the UCN and the cold neutrons, in the pulsed beam. Using the unique timing structure, we can reliably extract the UCN signal. Solid ortho-D2_2 is used to calibrate UCN transmission through the apparatus, which is designed primarily for studies of UCN production in solid O2_2. In addition to setting the overall detection efficiency in the apparatus, UCN production data using solid D2_2 suggest that the UCN upscattering cross-section is smaller than previous estimates, indicating the deficiency of the incoherent approximation widely used to estimate inelastic cross-sections in the thermal and cold regimes

    Generating-function method for tensor products

    Full text link
    This is the first of two articles devoted to a exposition of the generating-function method for computing fusion rules in affine Lie algebras. The present paper is entirely devoted to the study of the tensor-product (infinite-level) limit of fusions rules. We start by reviewing Sharp's character method. An alternative approach to the construction of tensor-product generating functions is then presented which overcomes most of the technical difficulties associated with the character method. It is based on the reformulation of the problem of calculating tensor products in terms of the solution of a set of linear and homogeneous Diophantine equations whose elementary solutions represent ``elementary couplings''. Grobner bases provide a tool for generating the complete set of relations between elementary couplings and, most importantly, as an algorithm for specifying a complete, compatible set of ``forbidden couplings''.Comment: Harvmac (b mode : 39 p) and Pictex; this is a substantially reduced version of hep-th/9811113 (with new title); to appear in J. Math. Phy

    Joint and individual analysis of breast cancer histologic images and genomic covariates

    Get PDF
    A key challenge in modern data analysis is understanding connections between complex and differing modalities of data. For example, two of the main approaches to the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genetics. While histopathology is the gold standard for diagnostics and there have been many recent breakthroughs in genetics, there is little overlap between these two fields. We aim to bridge this gap by developing methods based on Angle-based Joint and Individual Variation Explained (AJIVE) to directly explore similarities and differences between these two modalities. Our approach exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction to address some of the challenges presented by statistical analysis of histopathology image data. CNNs raise issues of interpretability that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features. Our results provide many interpretable connections and contrasts between histopathology and genetics
    • …
    corecore