139 research outputs found

    Fault detection and isolation filter design for systems subject to polytopic uncertainties

    Get PDF
    This paper considers the robust fault detection and isolation (FDI) problem for linear time-invariant dynamic systems subject to faults, disturbances and polytopic uncertainties. We employ an observer-based FDI filter to generate a residual signal. We propose a cost function that penalizes a weighted combination of the deviation of the fault to residual dynamics from a given fault isolation reference model, as well as the effects of disturbances and uncertainties on the residual, using the Hinfin norm as a measure. The proposed cost function thus captures the requirements of fault detection and isolation and disturbance rejection in the presence of polytopic uncertainties. We derive necessary and sufficient conditions for the existence of an FDI filter that achieves the design specifications. This condition takes the form of easily implementable linear matrix inequality (LMI) optimization problem

    Integrated design of dynamic controller with fault diagnosis and tolerance

    Get PDF
    Fault detection capability tends to become an integral part of control system design procedures for practical engineering systems. It is thus desirable fault diagnosis/tolerance functions to also be included in the controller design. In this context, we develop a generic observer-based feedback controller where the observer-part can also generate a residual signal for fault detection purposes. The design objectives is a mixture of Hinfin control and Hinfin fault detection and isolation. This multi-objective optimization problem is then formulated using Bilinear Matrix Inequalities (BMI) and a sub-optimal solution is achieved via transformation to Linear Matrix Inequalities (LMI). The developed approach and algorithm are verified in study of an application to a railway suspension system of ride quality maintenance

    Existence of solutions to discrete and continuous second-order boundary value problems via Lyapunov functions and a priori bounds

    Get PDF
    This article analyzes nonlinear, second-order difference equations subject to “left-focal” two-point boundary conditions. Our research questions are: RQ1: What are new, sufficient conditions under which solutions to our “discrete” problem will exist?; RQ2: What, if any, is the relationship between solutions to the discrete problem and solutions of the “continuous”, left-focal analogue involving second-order ordinary differential equations? Our approach involves obtaining new a priori bounds on solutions to the discrete problem, with the bounds being independent of the step size. We then apply these bounds, through the use of topological degree theory, to yield the existence of at least one solution to the discrete problem. Lastly, we show that solutions to the discrete problem will converge to solutions of the continuous problem

    Lateral mobility of FcγRIIa is reduced by protein kinase C activation

    Get PDF
    AbstractThe lateral mobility of membrane proteins can reflect the extent of various protein-protein interactions. Using the fluorescence recovery after photobleaching technique, we have studied the lateral mobility of human FcγRIIa and some FcγRIIa mutants expressed in either P388D1 cells, a mouse macrophagelike cell line, or in Chinese hamster ovary (CHO) cells [1]. After treatment with phorbol myristate acetate (PMA), only the FcγRIIa molecules capable of mediating rapid endocytosis of immune complexes exhibited a reduced lateral diffusion coefficient with respect to untreated controls. Wild type FcγRIIa expressed in CHO cells, and nonfunctional FcγRIIa mutants expressed in P388D1 cells did not show any differences upon PMA treatment. This finding suggests that protein kinase C activation evokes additional protein-protein interactions with the cytoplasmic domain of functional FcγRIIa, which reduced receptor lateral mobility. The identity of these putative interacting proteins and the nature of the interactions remain to be elucidated

    Fault detection and isolation filter design for systems subject to polytopic uncertainties

    Get PDF
    This paper considers the robust fault detection and isolation (FDI) problem for linear time-invariant dynamic systems subject to faults, disturbances and polytopic uncertainties. We employ an observer-based FDI filter to generate a residual signal. We propose a cost function that penalizes a weighted combination of the deviation of the fault to residual dynamics from a given fault isolation reference model, as well as the effects of disturbances and uncertainties on the residual, using the Hinfin norm as a measure. The proposed cost function thus captures the requirements of fault detection and isolation and disturbance rejection in the presence of polytopic uncertainties. We derive necessary and sufficient conditions for the existence of an FDI filter that achieves the design specifications. This condition takes the form of easily implementable linear matrix inequality (LMI) optimization problem

    Integrated design of dynamic controller with fault diagnosis and tolerance

    Get PDF
    Fault detection capability tends to become an integral part of control system design procedures for practical engineering systems. It is thus desirable fault diagnosis/tolerance functions to also be included in the controller design. In this context, we develop a generic observer-based feedback controller where the observer-part can also generate a residual signal for fault detection purposes. The design objectives is a mixture of Hinfin control and Hinfin fault detection and isolation. This multi-objective optimization problem is then formulated using Bilinear Matrix Inequalities (BMI) and a sub-optimal solution is achieved via transformation to Linear Matrix Inequalities (LMI). The developed approach and algorithm are verified in study of an application to a railway suspension system of ride quality maintenance

    A simple, low-cost conductive composite material for 3D printing of electronic sensors

    Get PDF
    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes

    Presence of virus neutralizing antibodies in cerebral spinal fluid correlates with non-lethal rabies in dogs.

    Get PDF
    BACKGROUND: Rabies is traditionally considered a uniformly fatal disease after onset of clinical manifestations. However, increasing evidence indicates that non-lethal infection as well as recovery from flaccid paralysis and encephalitis occurs in laboratory animals as well as humans. METHODOLOGY/PRINCIPAL FINDINGS: Non-lethal rabies infection in dogs experimentally infected with wild type dog rabies virus (RABV, wt DRV-Mexico) correlates with the presence of high level of virus neutralizing antibodies (VNA) in the cerebral spinal fluid (CSF) and mild immune cell accumulation in the central nervous system (CNS). By contrast, dogs that succumbed to rabies showed only little or no VNA in the serum or in the CSF and severe inflammation in the CNS. Dogs vaccinated with a rabies vaccine showed no clinical signs of rabies and survived challenge with a lethal dose of wild-type DRV. VNA was detected in the serum, but not in the CSF of immunized dogs. Thus the presence of VNA is critical for inhibiting virus spread within the CNS and eventually clearing the virus from the CNS. CONCLUSIONS/SIGNIFICANCE: Non-lethal infection with wt RABV correlates with the presence of VNA in the CNS. Therefore production of VNA within the CNS or invasion of VNA from the periphery into the CNS via compromised blood-brain barrier is important for clearing the virus infection from CNS, thereby preventing an otherwise lethal rabies virus infection
    corecore