35,320 research outputs found

    Meson-Meson Scattering in Relativistic Constraint Dynamics

    Full text link
    Dirac's relativistic constraint dynamics have been successfully applied to obtain a covariant nonperturbative description of QED and QCD bound states. We use this formalism to describe a microscopic theory of meson-meson scattering as a relativistic generalization of the nonrelativistic quark-interchange model developed by Barnes and Swanson.Comment: 5 pages, 1 figure in LaTex, talk present at the First Meeting of the APS Topical Group on Hadronic Physics (Fermilab, October 24-26, 2004

    Novel Bose-Einstein Interference in the Passage of a Fast Particle in a Dense Medium

    Full text link
    When an energetic particle collides coherently with many medium particles at high energies, the Bose-Einstein symmetry with respect to the interchange of the exchanged virtual bosons leads to a destructive interference of the Feynman amplitudes in most regions of the phase space but a constructive interference in some other regions of the phase space. As a consequence, the recoiling medium particles have a tendency to come out collectively along the direction of the incident fast particle, each carrying a substantial fraction of the incident longitudinal momentum. Such an interference appearing as collective recoils of scatterers along the incident particle direction may have been observed in angular correlations of hadrons associated with a high-pTp_T trigger in high-energy AuAu collisions at RHIC.Comment: 10 pages, 2 figures, invited talk presented at the 35th Symposium on Nuclear Physics, Cocoyoc, Mexico, January 3, 2012, to be published in IOP Conference Serie

    Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density

    Full text link
    We calculate the two-pion correlation function for an expanding hadron source with a finite baryon density. The space-time evolution of the source is described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT) radius is extracted after effects of collective expansion and multiple scattering on the HBT interferometry have been taken into account, using quantum probability amplitudes in a path-integral formalism. We find that this radius is substantially smaller than the HBT radius extracted from the freeze-out configuration.Comment: 4 pages, 2 figure

    Interferometry signatures for QCD first-order phase transition in heavy ion collisions at GSI-FAIR energies

    Full text link
    Using the technique of quantum transport of the interfering pair we examine the Hanbury-Brown-Twiss (HBT) interferometry signatures for the particle-emitting sources of pions and kaons produced in the heavy ion collisions at GSI-FAIR energies. The evolution of the sources is described by relativistic hydrodynamics with the system equation of state of the first-order phase transition from quark-gluon plasma (QGP) to hadronic matter. We use quantum probability amplitudes in a path-integral formalism to calculate the two-particle correlation functions, where the effects of particle decay and multiple scattering are taken into consideration. We find that the HBT radii of kaons are smaller than those of pions for the same initial conditions. Both the HBT radii of pions and kaons increase with the system initial energy density. The HBT lifetimes of the pion and kaon sources are sensitive to the initial energy density. They are significantly prolonged when the initial energy density is tuned to the phase boundary between the QGP and mixed phase. This prolongations of the HBT lifetimes of pions and kaons may likely be observed in the heavy ion collisions with an incident energy in the GSI-FAIR energy range.Comment: 16 pages, 4 figure

    Dynamics of Neural Networks with Continuous Attractors

    Full text link
    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.Comment: 6 pages, 7 figures with 4 caption

    Heavy flavor kinetics at the hadronization transition

    Full text link
    We investigate the in-medium modification of the charmonium breakup processes due to the Mott effect for light (pi, rho) and open-charm (D, D*) quark-antiquark bound states at the chiral/deconfinement phase transition. The Mott effect for the D-mesons effectively reduces the threshold for charmonium breakup cross sections, which is suggested as an explanation of the anomalous J/psi suppression phenomenon in the NA50 experiment. Further implications of finite-temperature mesonic correlations for the hadronization of heavy flavors in heavy-ion collisions are discussed.Comment: 4 pages, 2 figures, Contribution to SQM2001 Conference, submitted to J. Phys.

    The Interference Term between the Spin and Orbital Contributions to M1 Transitions

    Get PDF
    We study the cross-correlation between the spin and orbital parts of magnetic dipole transitions M1 in both isoscalar and isovector channels. In particular, we closely examine certain cases where B(M1)\sum B(M1) is very close to B(M1)σ+B(M1)l\sum B(M1)_{\sigma} + \sum B(M1)_l, implying a cancellation of the summed interference terms. We gain some insight into this problem by considering special cases approaching the SU(3) limit, and by examining the behaviour of single-particle transitions at the beginning and towards the end of the s-d shell.Comment: 9 pages of latex file and no figure

    Ion-acoustic solitary waves and shocks in a collisional dusty negative ion plasma

    Full text link
    We study the effects of ion-dust collisions and ion kinematic viscosities on the linear ion-acoustic instability as well as the nonlinear propagation of small amplitude solitary waves and shocks (SWS) in a negative ion plasma with immobile charged dusts. {The existence of two linear ion modes, namely the `fast' and `slow' waves is shown, and their properties are analyzed in the collisional negative ion plasma.} {Using the standard reductive perturbation technique, we derive a modified Korteweg-de Vries-Burger (KdVB) equation which describes the evolution of small amplitude SWS.} {The profiles of the latter are numerically examined with parameters relevant for laboratory and space plasmas where charged dusts may be positively or negatively charged.} It is found that negative ion plasmas containing positively charged dusts support the propagation of SWS with negative potential. However, the perturbations with both positive and negative potentials may exist when dusts are negatively charged. The results may be useful for the excitation of SWS in laboratory negative ion plasmas as well as for observation in space plasmas where charged dusts may be positively or negatively charged.Comment: 13 pages, 9 figures; To appear in Physical Review
    corecore