81,797 research outputs found

    General covariance violation and the gravitational dark matter. I. Scalar graviton

    Full text link
    The violation of the general covariance is proposed as a resource of the gravitational dark matter. The minimal violation of the covariance to the unimodular one is associated with the massive scalar graviton as the simplest representative of such a matter. The Lagrangian formalism for the continuous medium, the perfect fluid in particular, in the scalar graviton environment is developed. The implications for cosmology are shortly indicated.Comment: 11 pages; minor correction

    Deterministic creation of stationary entangled states by dissipation

    Full text link
    We propose a practical physical system for creation of a stationary entanglement by dissipation without employing the environment engineering techniques. The system proposed is composed of two perfectly distinguishable atoms, through their significantly different transition frequencies, with only one atom addressed by an external laser field. We show that the arrangement would easily be realized in practice by trapping the atoms at the distance equal to the quarter-wavelength of a standing-wave laser field and locating one of the atoms at a node and the other at the successive antinode of the wave. The undesirable dipole-dipole interaction between the atoms, that could be large at this small distance, is adjusted to zero by a specific initial preparation of the atoms or by a specific polarization of the atomic dipole moments. Following this arrangement, we show that the dissipative relaxation can create a stationary entanglement on demand by tuning the Rabi frequency of the laser field to the difference between the atomic transition frequencies. The laser field dresses the atom and we identify that the entangled state occurs when the frequency of one of the Rabi sidebands of the driven atom tunes to frequency of the undriven atom. It is also found that this system behaves as a cascade open system where the fluorescence from the dressed atom drives the other atom with no feedback.Comment: Published versio

    Field-induced structure transformation in electrorheological solids

    Full text link
    We have computed the local electric field in a body-centered tetragonal (BCT) lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local field strength. For the ground state of an electrorheological solid of hard spheres, we identified a novel structure transformation from the BCT to the face-centered cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard sphere constraint. In contrast to the previous results, the local field exhibits a non-monotonic transition from BCT to FCC. As c increases from the BCT ground state, the local field initially decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a maximum value and finally decreases to the FCC value. An experimental realization of the structure transformation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.

    X-ray photoelectron spectroscopy measurement of valence-band offsets for Mg-based semiconductor compounds

    Get PDF
    We have used x-ray photoelectron spectroscopy to measure the valence-band offsets for the lattice matched MgSe/Cd0.54Zn0.46Se and MgTe/Cd0.88Zn0.12Te heterojunctions grown by molecular beam epitaxy. By measuring core level to valence-band maxima and core level to core level binding energy separations, we obtain values of 0.56+/-0.07 eV and 0.43+/-0.11 eV for the valence-band offsets of MgSe/Cd0.54Zn0.46Se and MgTe/Cd0.88Zn0.12Te, respectively. Both of these values deviate from the common anion rule, as may be expected given the unoccupied cation d orbitals in Mg. Application of our results to the design of current II-VI wide band-gap light emitters is discussed

    Influence of Charge Order on the Ground States of TMTTF Molecular Salts

    Full text link
    (TMTTF)2AsF6 and (TMTTF)2SbF6 are both known to undergo a charge ordering phase transition, though their ground states are different. The ground state of the first is Spin-Peierls, and the second is an antiferromagnet. We study the effect of pressure on the ground states and the charge-ordering using 13C NMR spectroscopy. The experiments demonstrate that the the CO and SP order parameters are repulsive, and consequently the AF state is stabilized when the CO order parameter is large, as it is for (TMTTF)2SbF6. An extension of the well-known temperature/pressure phase diagram is proposed.Comment: 5pages, 5 figures, Proceeding of ISCOM2003, to appear in Journal de Physique I

    Donor Electron Wave Functions for Phosphorus in Silicon: Beyond Effective Mass Theory

    Full text link
    We calculate the electronic wave-function for a phosphorus donor in silicon by numerical diagonalisation of the donor Hamiltonian in the basis of the pure crystal Bloch functions. The Hamiltonian is calculated at discrete points localised around the conduction band minima in the reciprocal lattice space. Such a technique goes beyond the approximations inherent in the effective-mass theory, and can be modified to include the effects of altered donor impurity potentials, externally applied electro-static potentials, as well as the effects of lattice strain. Modification of the donor impurity potential allows the experimentally known low-lying energy spectrum to be reproduced with good agreement, as well as the calculation of the donor wavefunction, which can then be used to calculate parameters important to quantum computing applications.Comment: 10 pages, 5 figure

    Relativistic Charged Spheres II: Regularity and Stability

    Full text link
    We present new results concerning the existence of static, electrically charged, perfect fluid spheres that have a regular interior and are arbitrarily close to a maximally charged black-hole state. These configurations are described by exact solutions of Einstein's field equations. A family of these solutions had already be found (de Felice et al., 1995) but here we generalize that result to cases with different charge distribution within the spheres and show, in an appropriate parameter space, that the set of such physically reasonable solutions has a non zero measure. We also perform a perturbation analysis and identify the solutions which are stable against adiabatic radial perturbations. We then suggest that the stable configurations can be considered as classic models of charged particles. Finally our results are used to show that a conjecture of Kristiansson et al. (1998) is incorrect.Comment: revtex, 13 pages. five EPS figures. Accepted by CQ
    corecore