249 research outputs found
VisIVOWeb: A WWW Environment for Large-Scale Astrophysical Visualization
This article presents a newly developed Web portal called VisIVOWeb that aims
to provide the astrophysical community with powerful visualization tools for
large-scale data sets in the context of Web 2.0. VisIVOWeb can effectively
handle modern numerical simulations and real-world observations. Our
open-source software is based on established visualization toolkits offering
high-quality rendering algorithms. The underlying data management is discussed
with the supported visualization interfaces and movie-making functionality. We
introduce VisIVOWeb Network, a robust network of customized Web portals for
visual discovery, and VisIVOWeb Connect, a lightweight and efficient solution
for seamlessly connecting to existing astrophysical archives. A significant
effort has been devoted for ensuring interoperability with existing tools by
adhering to IVOA standards. We conclude with a summary of our work and a
discussion on future developments
Recommended from our members
Initiation Pressure Thresholds from Three Sources
Pressure thresholds are minimum pressures needed to start explosive initiation that ends in detonation. We obtain pressure thresholds from three sources. Run-to-detonation times are the poorest source but the fitting of a function gives rough results. Flyer-induced initiation gives the best results because the initial conditions are the best known. However, very thick flyers are needed to give the lowest, asymptotic pressure thresholds used in modern models and this kind of data is rarely available. Gap test data is in much larger supply but the various test sizes and materials are confusing. We find that explosive pressures are almost the same if the distance in the gap test spacers are in units of donor explosive radius. Calculated half-width time pulses in the spacers may be used to create a pressure-time curve similar to that of the flyers. The very-large Eglin gap tests give asymptotic thresholds comparable to extrapolated flyer results. The three sources are assembled into a much-expanded set of near-asymptotic pressure thresholds. These thresholds vary greatly with density: for TATB/LX-17/PBX 9502, we find values of 4.9 and 8.7 GPa at 1.80 and 1.90 g/cm{sup 3}, respectively
Recommended from our members
Analytic Model of Reactive Flow
A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible
Recommended from our members
Porting Inition and Failure to Linked Cheetah
Linked CHEETAH is a thermo-chemical code coupled to a 2-D hydrocode. Initially, a quadratic-pressure dependent kinetic rate was used, which worked well in modeling prompt detonation of explosives of large size, but does not work on other aspects of explosive behavior. The variable-pressure Tarantula reactive flow rate model was developed with JWL++ in order to also describe failure and initiation, and we have moved this model into Linked CHEETAH. The model works by turning on only above a pressure threshold, where a slow turn-on creates initiation. At a higher pressure, the rate suddenly leaps to a large value over a small pressure range. A slowly failing cylinder will see a rapidly declining rate, which pushes it quickly into failure. At a high pressure, the detonation rate is constant. A sequential validation procedure is used, which includes metal-confined cylinders, rate-sticks, corner-turning, initiation and threshold, gap tests and air gaps. The size (diameter) effect is central to the calibration
Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. II. Mass Loss Rates and Velocity Laws
We analyze the dynamics of 2D stationary line-driven winds from accretion
disks in cataclysmic variables (CVs), by generalizing the Castor, Abbott and
Klein theory. In paper 1, we have solved the wind Euler equation, derived its
two eigenvalues, and addressed the solution topology and wind geometry. Here,
we focus on mass loss and velocity laws. We find that disk winds, even in
luminous novalike variables, have low optical depth, even in the strongest
driving lines. This suggests that thick-to-thin transitions in these lines
occur. For disks with a realistic radial temperature, the mass loss is
dominated by gas emanating from the inner decade in r. The total mass loss rate
associated with a luminosity 10 Lsun is 10^{-12} Msun/yr, or 10^{-4} of the
mass accretion rate. This is one order of magnitude below the lower limit
obtained from P Cygni lines, when the ionizing flux shortwards of the Lyman
edge is supressed. The difficulties with such small mass loss rates in CVs are
principal, and confirm our previous work. We conjecture that this issue may be
resolved by detailed nonLTE calculations of the line force within the context
of CV disk winds, and/or better accounting for the disk energy distribution and
wind ionization structure. We find that the wind velocity profile is well
approximated by the empirical law used in kinematical modeling. The
acceleration length scale is given by the footpoint radius of the wind
streamline in the disk. This suggests an upper limit of 10 Rwd to the
acceleration scale, which is smaller by factors of a few as compared to values
derived from line fitting.Comment: 14 pages, 3 Postscript figures, also from
http://www.pa.uky.edu/~shlosman/publ.html. Astrophysical Journal, submitte
Recommended from our members
Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives
We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for species coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved
Recommended from our members
The Energy Diameter Effect
We explore various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder. The detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation that detonation energy is roughly proportional to the square of the detonation velocity is shown by data and calculation
B cell immunosenescence: different features of naive and memory B cells in elderly
Elderly people show a reduced protection against new infections and a decreased response to vaccines as a consequence of impairment of both cellular and humoral immunity. In this paper we have studied memory/na\uefve B cells in the elderly, evaluating surface immunoglobulin expression, production of the pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-\u3b1 and interleukin (IL)-10, and presence of somatic hypermutation, focusing on the IgG(+)IgD(-)CD27(-) double negative (DN) B cells that are expanded in the elderly. Our results show that na\uefve B cells from young donors need a sufficiently strong stimulus to be activated "in vitro", while na\uefve B cells from old subjects are able to produce IL-10 and TNF-\u3b1 when stimulated "physiologically" (\u3b1-CD40/IL-4), suggesting that these cells might play a role in the control of the immuno-inflammatory environment in the elderly. In addition, in the elderly there is an accumulation of DN B cells with a reduced rate of somatic hypermutation. Thus, DN B lymphocytes may be exhausted cells that are expanded and accumulate as a by-product of persistent stimulation or impaired germinal center formatio
- …