82 research outputs found

    Atom lithography using MRI-type feature placement

    Get PDF
    We demonstrate the use of frequency-encoded light masks in neutral atom lithography. We demonstrate that multiple features can be patterned across a monotonic potential gradient. Features as narrow as 0.9 microns are fabricated on silicon substrates with a metastable argon beam. Internal state manipulation with such a mask enables continuously adjustable feature positions and feature densities not limited by the optical wavelength, unlike previous light masks.Comment: 4 pages, 4 figure

    Enhanced Pauli blocking of light scattering in a trapped Fermi gas

    Full text link
    Pauli blocking of spontaneous emission by a single excited-state atom has been predicted to be dramatic at low temperature when the Fermi energy EFE_\mathrm{F} exceeds the recoil energy ERE_\mathrm{R}. The photon scattering rate of a ground-state Fermi gas can also be suppressed by occupation of the final states accessible to a recoiling atom, however suppression is diminished by scattering events near the Fermi edge. We analyze two new approaches to improve the visibility of Pauli blocking in a trapped Fermi gas. Focusing the incident light to excite preferentially the high-density region of the cloud can increase the blocking signature by 14%, and is most effective at intermediate temperature. Spontaneous Raman scattering between imbalanced internal states can be strongly suppressed at low temperature, and is completely blocked for a final-state EF>4ERE_\mathrm{F} > 4 E_\mathrm{R} in the high imbalance limit.Comment: 12 pages, 8 figures. v4: to appear in Journal of Physics B: Atomic, Molecular, and Optical Physic

    Spin Rotations in a Bose-Einstein Condensate Driven by Counterflow and Spin-independent Interactions

    Full text link
    We observe spin rotations caused by atomic collisions in a non-equilibrium Bose-condensed gas of 87^{87}Rb. Reflection from a pseudomagnetic barrier creates counterflow in which forward- and backward-propagating matter waves have partly transverse spin directions. Even though inter-atomic interaction strengths are state-independent, the indistinguishability of parallel spins leads to spin dynamics. A local magnetodynamic model, which captures the salient features of the observed spin textures, highlights an essential connection between four-wave mixing and collisional spin rotation. The observed phenomenon has previously been thought to exist only in nondegenerate gases; our observations and model clarify the nature of these effective-magnetic spin rotations.Comment: 13 pages, 7 figure

    Transverse Demagnetization Dynamics of a Unitary Fermi Gas

    Full text link
    Understanding the quantum dynamics of strongly interacting fermions is a problem relevant to diverse forms of matter, including high-temperature superconductors, neutron stars, and quark-gluon plasma. An appealing benchmark is offered by cold atomic gases in the unitary limit of strong interactions. Here we study the dynamics of a transversely magnetized unitary Fermi gas in an inhomogeneous magnetic field. We observe the demagnetization of the gas, caused by diffusive spin transport. At low temperatures, the diffusion constant saturates to the conjectured quantum-mechanical lower bound /m\simeq \hbar/m, where mm is the particle mass. The development of pair correlations, indicating the transformation of the initially non-interacting gas towards a unitary spin mixture, is observed by measuring Tan's contact parameter.Comment: 8 pages, 6 figures. Accepted versio

    Intraosseous Hemangioma of the Left Parietal Bone

    Get PDF
    Background: A 26-year-old male presented with pain in his left tibia. Ultrasonography revealed no abnormalities. Tc-99m-bonescan was requested to rule out stress fracture. The scan confirmed the presence of a left tibial stress fracture, as well as an enhancing lesion in the left parietal bone. The patient had no neurological symptoms

    Breakdown of time-dependent mean-field theory for a one-dimensional condensate of impenetrable bosons

    Full text link
    We show that the time-dependent nonlinear Schrodinger equation of mean-field theory has limited utility for a one-dimensional condensate of impenetrable bosons. Mean-field theory with its associated order parameter predicts interference between split condensates that are recombined, whereas an exact many-body treatment shows minimal interference.Comment: 4 pages, 2 EPS figure

    Spontaneous separation of two-component Fermi gases in a double-well trap

    Full text link
    The two-component Fermi gas in a double-well trap is studied using the density functional theory and the density profile of each component is calculated within the Thomas-Fermi approximation. We show that the two components are spatially separate in the two wells once the repulsive interaction exceeds the Stoner point, signaling the occurrence of the ferromagnetic transition. Therefore, the double-well trap helps to explore itinerant ferromagnetism in atomic Fermi gases, since the spontaneous separation can be examined by measuring component populations in one well.Comment: 6 pages, 6 figures, to appear in ep

    Low-temperature, high-density magneto-optical trapping of potassium using the open 4S-5P transition at 405 nm

    Full text link
    We report the laser cooling and trapping of neutral potassium on an open transition. Fermionic 40K is captured using a magneto-optical trap (MOT) on the closed 4S-4P transition at 767 nm and then transferred, with unit efficiency, to a MOT on the open 4S-5P transition at 405 nm. Because the 5P state has a smaller line width than the 4P state, the Doppler limit is reduced. We observe temperatures as low as 63(6) microkelvin, the coldest potassium MOT reported to date. The density of trapped atoms also increases, due to reduced temperature and reduced expulsive light forces. We measure a two-body loss coefficient of 2 x 10^-10 cm^3/s, and estimate an upper bound of 8x10^-18 cm^2 for the ionization cross section of the 5P state at 405 nm. The combined temperature and density improvement in the 405 nm MOT is a twenty-fold increase in phase space density over our 767 nm MOT, showing enhanced pre-cooling for quantum gas experiments. A qualitatively similar enhancement is observed in a 405 nm MOT of bosonic 41K.Comment: 8 pages, 8 figures, 1 tabl

    Measurement of one-particle correlations and momentum distributions for trapped 1D gases

    Full text link
    van Hove's theory of scattering of probe particles by a macroscopic target is generalized so as to relate the differential cross section for atomic ejection via stimulated Raman transitions to one-particle momentum-time correlations and momentum distributions of 1D trapped gases. This method is well suited to probing the longitudinal momentum distributions of 1D gases in situ, and examples are given for bosonic and fermionic atoms.Comment: 4 pages, 2 .eps figure
    corecore