285 research outputs found

    Mytilus galloprovincialis-type foot-protein-1 alleles occur at low frequency among mussels in the Dutch Wadden Sea

    Get PDF
    The presence of M. galloprovincialis-type genes among the population of mussels in the Dutch Wadden Sea, historically described as M. edulis, was assessed. We applied the molecular technique in which a fragment of the gene coding for an adhesive protein of the byssus of mussels is amplified by PCR and assayed for length using electrophoresis. Among 321 individual mussels collected in August–October 2001 at 14 sites (5 intertidal, 9 subtidal) widely dispersed over the Dutch Wadden Sea, 6 specimens (collected at 5 sites) were found that showed a heterozygote genotype with both the M. edulis- and the M. galloprovincialis-type alleles being amplified; all others were identified as homozygotes for the M. edulis-type allele. Differentiation in frequencies of heterozygotes among sites was not detected. The ofact that the M. galloprovincialis-type allele was present at low frequency (0.0093) may be attributed to one of three possible, and not mutually exclusive, causes: incomplete diagnosticity of this marker, an historically stable introgression zone in the Wadden Sea, or a recent invasion.

    Baseline and Stress-Induced Plasma Corticosterone during Long-Distance Migration in the Bar-Tailed Godwit, Limosa lapponica

    Get PDF
    The specific roles of corticosterone in promotion of avian migration remain unclear even though this glucocorticosteroid is elevated in many migrating bird species. In general, glucocorticosteroids promote metabolic homeostasis and may elicit effects on feeding and locomotion. Because the migratory stages of refueling and flight are characterized by distinct behaviors and physiology, the determination of corticosterone levels during each stage should help identify potential processes in which corticosterone is involved. We measured baseline levels of corticosterone in bar-tailed godwits (Limosa lapponica) during two distinct stages of migration: (1) immediately after arrival at a false stopover site just short of theWadden Sea and (2) throughout the subsequent 4-wk refueling period on the Wadden Sea. Plasma corticosterone was higher in arriving than in refueling birds. In addition, corticosterone increased with size-corrected body mass during the refueling phase, suggesting that corticosterone rises as birds prepare to reinitiate flight. Therefore, elevated corticosterone appears associated with migratory flight and may participate in processes characterizing this stage. We also performed a capture stress protocol in all birds and found that corticosterone increased in both arriving and refueling godwits. Therefore, the normal course of migration may be typified by corticosterone concentrations that are lower than those associated with stressful and life-threatening episodes.

    Impact of traffic management on black carbon emissions: a microsimulation study

    Get PDF
    This paper investigates the effectiveness of traffic management tools, includ- ing traffic signal control and en-route navigation provided by variable message signs (VMS), in reducing traffic congestion and associated emissions of CO2, NOx, and black carbon. The latter is among the most significant contributors of climate change, and is associated with many serious health problems. This study combines traffic microsimulation (S-Paramics) with emission modeling (AIRE) to simulate and predict the impacts of different traffic management measures on a number traffic and environmental Key Performance Indicators (KPIs) assessed at different spatial levels. Simulation results for a real road network located in West Glasgow suggest that these traffic management tools can bring a reduction in travel delay and BC emission respectively by up to 6 % and 3 % network wide. The improvement at local levels such as junctions or corridors can be more significant. However, our results also show that the potential benefits of such interventions are strongly dependent on a number of factors, including dynamic demand profile, VMS compliance rate, and fleet composition. Extensive discussion based on the simulation results as well as managerial insights are provided to support traffic network operation and control with environmental goals. The study described by this paper was conducted under the support of the FP7-funded CARBOTRAF project

    CARBOTRAF: A decision Support system for reducing pollutant emissions by adaptive traffic management

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses all these model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    A comparison of continuous and intermittent EEG recordings in geese:How much data are needed to reliably estimate sleep-wake patterns?

    Get PDF
    Recent technological advancements allow researchers to measure electrophysiological parameters of animals, such as sleep, in remote locations by using miniature dataloggers. Yet, continuous recording of sleep might be constrained by the memory and battery capacity of the recording devices. These limitations can be alleviated by recording intermittently instead of continuously, distributing the limited recording capacity over a longer period. We assessed how reduced sampling of sleep recordings affected measurement precision of NREM sleep, REM sleep, and Wake. We analysed a dataset on sleep in barnacle geese that we resampled following 12 different recording schemes, with data collected for 1 min per 5 min up to 1 min per 60 min in steps of 5 min. Recording 1 min in 5 min still yielded precise estimates of hourly sleep-wake values (correlations of 0.9) while potentially extending the total recording period by a factor of 5. The correlation strength gradually decreased to 0.5 when recording 1 min per 60 min. For hourly values of Wake and NREM sleep, the correlation strength in winter was higher compared with summer, reflecting more fragmented sleep in summer. Interestingly for hourly values of REM sleep, correlations were unaffected by season. Estimates of total 24 h sleep-wake values were similar for all intermittent recording schedules compared to the continuous recording. These data indicate that there is a large safe range in which researchers can periodically record sleep. Increasing the sample size while maintaining precision can substantially increase the statistical power, and is therefore recommended whenever the total recording time is limited

    2′,3,4,4′,5-Penta­meth­oxy­chalcone

    Get PDF
    In the title chalcone [systemetic name 1-(2,4-dimeth­oxy­phen­yl)-3-(3,4,5-trimeth­oxy­phen­yl)prop-2-en-1-one], C20H22O6, the dihedral angle between the plane of the two benzene rings is 7.03 (4)° with all but one of the meth­oxy groups essentially co-planar with these rings [C—C—O—C torsion angles = −76.1 (2), −0.7 (3), 1.8 (3), −6.2 (3), 2.0 (3)°]. An intra­molecular C—H⋯O inter­action occurs. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds
    corecore