19 research outputs found

    Isothermal microcalorimetry minimal inhibitory concentration testing in extensively drug resistant Gram-negative bacilli: a multicentre study

    Get PDF
    Objectives: To evaluate the performance of an isothermal microcalorimetry (IMC) method for determining the MICs among extensively drug-resistant Gram-negative bacilli. Methods: A collection of 320 clinical isolates (n = 80 of each) of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Sweden, Spain, Italy and the Netherlands were tested. The MICs were determined using the IMC device calScreener (Symcel, Stockholm, Sweden) and ISO-broth microdilution as the reference method. Essential agreement, categorical agreement, very major errors (VME), major errors (ME) and minor (mE) errors for each antibiotic were determined. Results: Data from 316 isolates were evaluated. Four errors (two ME, one VME, one mE) among 80 K. pneumoniae, six errors (four ME, one VME, one mE) among 79 E. coli, 15 errors (seven VME, three ME, five mE) among 77 P. aeruginosa and 18 errors (12 VME, two ME, four mE) among 80 A. baumannii were observed. Average essential agreement and categorical agreement of the IMC method were 96.6% (95% confidence interval, 94.2–99) and 97.1% (95% confidence interval, 95.4–98.5) respectively when the MICs were determined at the end of 18 hours. Categorical agreement of the IMC method for prediction of MIC by the end of 8 hours for colistin, meropenem, amikacin, ciprofloxacin and piperacillin/tazobactam were 95%, 91.4%, 94%, 95.2% and 93.7% respectively. Conclusions: The IMC method could accurately determine the MICs among extensively drug-resistant clinical isolates of E. coli, K. pneumoniae, P. aeruginosa and A. baumannii isolates

    Ipsilesional Mu Rhythm Desynchronization and Changes in Motor Behavior Following Post Stroke BCI Intervention for Motor Rehabilitation

    Get PDF
    Loss of motor function is a common deficit following stroke insult and often manifests as persistent upper extremity (UE) disability which can affect a survivor’s ability to participate in activities of daily living. Recent research suggests the use of brain–computer interface (BCI) devices might improve UE function in stroke survivors at various times since stroke. This randomized crossover-controlled trial examines whether intervention with this BCI device design attenuates the effects of hemiparesis, encourages reorganization of motor related brain signals (EEG measured sensorimotor rhythm desynchronization), and improves movement, as measured by the Action Research Arm Test (ARAT). A sample of 21 stroke survivors, presenting with varied times since stroke and levels of UE impairment, received a maximum of 18–30 h of intervention with a novel electroencephalogram-based BCI-driven functional electrical stimulator (EEG-BCI-FES) device. Driven by spectral power recordings from contralateral EEG electrodes during cued attempted grasping of the hand, the user’s input to the EEG-BCI-FES device modulates horizontal movement of a virtual cursor and also facilitates concurrent stimulation of the impaired UE. Outcome measures of function and capacity were assessed at baseline, mid-therapy, and at completion of therapy while EEG was recorded only during intervention sessions. A significant increase in r-squared values [reflecting Mu rhythm (8–12 Hz) desynchronization as the result of attempted movements of the impaired hand] presented post-therapy compared to baseline. These findings suggest that intervention corresponds with greater desynchronization of Mu rhythm in the ipsilesional hemisphere during attempted movements of the impaired hand and this change is related to changes in behavior as a result of the intervention. BCI intervention may be an effective way of addressing the recovery of a stroke impaired UE and studying neuromechanical coupling with motor outputs.Clinical Trial Registration:ClinicalTrials.gov, identifier NCT02098265

    Behavioral Outcomes Following Brain–Computer Interface Intervention for Upper Extremity Rehabilitation in Stroke: A Randomized Controlled Trial

    Get PDF
    Stroke is a leading cause of persistent upper extremity (UE) motor disability in adults. Brain–computer interface (BCI) intervention has demonstrated potential as a motor rehabilitation strategy for stroke survivors. This sub-analysis of ongoing clinical trial (NCT02098265) examines rehabilitative efficacy of this BCI design and seeks to identify stroke participant characteristics associated with behavioral improvement. Stroke participants (n = 21) with UE impairment were assessed using Action Research Arm Test (ARAT) and measures of function. Nine participants completed three assessments during the experimental BCI intervention period and at 1-month follow-up. Twelve other participants first completed three assessments over a parallel time-matched control period and then crossed over into the BCI intervention condition 1-month later. Participants who realized positive change (≥1 point) in total ARAT performance of the stroke affected UE between the first and third assessments of the intervention period were dichotomized as “responders” (<1 = “non-responders”) and similarly analyzed. Of the 14 participants with room for ARAT improvement, 64% (9/14) showed some positive change at completion and approximately 43% (6/14) of the participants had changes of minimal detectable change (MDC = 3 pts) or minimally clinical important difference (MCID = 5.7 points). Participants with room for improvement in the primary outcome measure made significant mean gains in ARATtotal score at completion (ΔARATtotal = 2, p = 0.028) and 1-month follow-up (ΔARATtotal = 3.4, p = 0.0010), controlling for severity, gender, chronicity, and concordance. Secondary outcome measures, SISmobility, SISadl, SISstrength, and 9HPTaffected, also showed significant improvement over time during intervention. Participants in intervention through follow-up showed a significantly increased improvement rate in SISstrength compared to controls (p = 0.0117), controlling for severity, chronicity, gender, as well as the individual effects of time and intervention type. Participants who best responded to BCI intervention, as evaluated by ARAT score improvement, showed significantly increased outcome values through completion and follow-up for SISmobility (p = 0.0002, p = 0.002) and SISstrength (p = 0.04995, p = 0.0483). These findings may suggest possible secondary outcome measure patterns indicative of increased improvement resulting from this BCI intervention regimen as well as demonstrating primary efficacy of this BCI design for treatment of UE impairment in stroke survivors.Clinical Trial Registration:ClinicalTrials.gov, NCT02098265

    Molecular epidemiology of <em>B.pseudomallei</em> in South Asia

    No full text
    No abstract availabl

    Performance evaluation of Active Melioidosis Detect-Lateral Flow Assay (AMD-LFA) for diagnosis of melioidosis in endemic settings with limited resources

    No full text
    Melioidosis is a fatal infection caused by the soil saprophyte Burkholderia pseudomallei. Early diagnosis and befitting medical management can significantly influence the clinical outcomes among patients with melioidosis. Witnessing an annual increment in the number of melioidosis cases, over the past few years, mainly from the developing tropical nations, the present study was undertaken to evaluate the diagnostic utility of Active Melioidosis Detect (TM) LateralFlow Assay (AMD-LFA), in comparison with enrichment culture and PCR. A total of 206clinical specimens obtained from 175 patients with clinical suspicion of melioidosis were considered for the evaluation. Positivity for B.pseudomallei using enrichment culture, PCR and AMD-LFA were observed among 63 (30.5%), 55 (26.6%) and 63 (30.5%) specimens respectively. The AMD-LFA failed to detect melioidosis from 9 culture-confirmed cases (6 whole blood specimens, 2 pus samples, and one synovial fluid). Further the test gave faint bands from 9 urine samples which were negative by culture and PCR. AMD-LFA demonstrated a sensitivity, specificity, of 85.71%(CI:74.61% to 93.25%) and 93.62% (Cl:88.23% to 97.04%), with positive predictive value of 85.71% (CI: 75.98% to 91.92%) and negative predictive value of 93.62% (Cl:88.89% to 96.42%). The test needs further evaluation in view of the faint bands from negative urine samples, for incorporating the test as a point of care assay. In view of its rapidity and ease of testing AMD-LFA might be useful in early diagnosis of melioidosis at resource constraint settings
    corecore