4,085 research outputs found
An updated analysis of NN elastic scattering data to 1.6 GeV
An energy-dependent and set of single-energy partial-wave analyses of
elastic scattering data have been completed. The fit to 1.6~GeV has been
supplemented with a low-energy analysis to 400 MeV. Using the low-energy fit,
we study the sensitivity of our analysis to the choice of coupling
constant. We also comment on the possibility of fitting data alone. These
results are compared with those found in the recent Nijmegen analyses. (Figures
may be obtained from the authors upon request.)Comment: 17 pages of text, VPI-CAPS-7/
The NN scattering 3S1-3D1 mixing angle at NNLO
The 3S1-3D1 mixing angle for nucleon-nucleon scattering, epsilon_1, is
calculated to next-to-next-to-leading order in an effective field theory with
perturbative pions. Without pions, the low energy theory fits the observed
epsilon_1 well for momenta less than MeV. Including pions
perturbatively significantly improves the agreement with data for momenta up to
MeV with one less parameter. Furthermore, for these momenta the
accuracy of our calculation is similar to an effective field theory calculation
in which the pion is treated non-perturbatively. This gives phenomenological
support for a perturbative treatment of pions in low energy two-nucleon
processes. We explain why it is necessary to perform spin and isospin traces in
d dimensions when regulating divergences with dimensional regularization in
higher partial wave amplitudes.Comment: 17 pages, journal versio
A Search for Nitrogen-Enhanced Metal-Poor Stars
Theoretical models of very metal-poor intermediate-mass Asymptotic Giant
Branch (AGB) stars predict a large overabundance of primary nitrogen. The very
metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the
polluted companions of now-extinct AGB stars, provide direct tests of the
predictions of these models. Recent studies of the carbon and nitrogen
abundances in metal-poor stars have focused on the most carbon-rich stars,
leading to a potential selection bias against stars that have been polluted by
AGB stars that produced large amounts of nitrogen, and hence have small [C/N]
ratios. We call these stars Nitrogen-Enhanced Metal-Poor (NEMP) stars, and
define them as having [N/Fe] > +0.5 and [C/N] < -0.5. In this paper, we report
on the [C/N] abundances of a sample of 21 carbon-enhanced stars, all but three
of which have [C/Fe] < +2.0. If NEMP stars were made as easily as
Carbon-Enhanced Metal-Poor (CEMP) stars, then we expected to find between two
and seven NEMP stars. Instead, we found no NEMP stars in our sample. Therefore,
this observational bias is not an important contributor to the apparent dearth
of N-rich stars. Our [C/N] values are in the same range as values reported
previously in the literature (-0.5 to +2.0), and all stars are in disagreement
with the predicted [C/N] ratios for both low-mass and high-mass AGB stars. We
suggest that the decrease in [C/N] from the low-mass AGB models is due to
enhanced extra-mixing, while the lack of NEMP stars may be caused by
unfavorable mass ratios in binaries or the difficulty of mass transfer in
binary systems with large mass ratios.Comment: 14 pages, 7 figures, to be published in Ap
Isoscalar off-shell effects in threshold pion production from pd collisions
We test the presence of pion-nucleon isoscalar off-shell effects in the
reaction around the threshold region. We find that these
effects significantly modify the production cross section and that they may
provide the missing strength needed to reproduce the data at threshold.Comment: 6 pages, REVTeX, twocolumn, including 3 figures (Postscript), uses
psfig, updated and extended versio
One-Dimensional Partially Asymmetric Simple Exclusion Process on a Ring with a Defect Particle
The effect of a moving defect particle for the one-dimensional partially
asymmetric simple exclusion process on a ring is considered. The current of the
ordinary particles, the speed of the defect particle and the density profile of
the ordinary particles are calculated exactly. The phase diagram for the
correlation length is identified. As a byproduct, the average and the variance
of the particle density of the one-dimensional partially asymmetric simple
exclusion process with open boundaries are also computed.Comment: 23 pages, 1 figur
Temperley-Lieb Words as Valence-Bond Ground States
Based on the Temperley--Lieb algebra we define a class of one-dimensional
Hamiltonians with nearest and next-nearest neighbour interactions. Using the
regular representation we give ground states of this model as words of the
algebra. Two point correlation functions can be computed employing the
Temperley--Lieb relations. Choosing a spin-1/2 representation of the algebra we
obtain a generalization of the (q-deformed) Majumdar--Ghosh model. The ground
states become valence-bond states.Comment: 9 Pages, LaTeX (with included style files
Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap
We have trapped cesium atoms over many minutes in the focus of a CO-laser
beam employing an extremely simple laser system. Collisional properties of the
unpolarized atoms in their electronic ground state are investigated. Inelastic
binary collisions changing the hyperfine state lead to trap loss which is
quantitatively analyzed. Elastic collisions result in evaporative cooling of
the trapped gas from 25 K to 10 K over a time scale of about 150 s.Comment: 5 pages, 3 figure
Nucleon-Nucleon Optical Model for Energies to 3 GeV
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those
derived by quantum inversion, which describe the NN interaction for T-lab below
300$ MeV are extended in their range of application as NN optical models.
Extensions are made in r-space using complex separable potentials definable
with a wide range of form factor options including those of boundary condition
models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et
al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of
the optical model interactions account for loss of flux into direct or resonant
production processes. The optical potential approach is of particular value as
it permits one to visualize fusion, and subsequent fission, of nucleons when
T-lab above 2 GeV. We do so by calculating the scattering wave functions to
specify the energy and radial dependences of flux losses and of probability
distributions. Furthermore, half-off the energy shell t-matrices are presented
as they are readily deduced with this approach. Such t-matrices are required
for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure
Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition
We define a correlation function that quantifies the spatial correlation of
single-particle displacements in liquids and amorphous materials. We show for
an equilibrium liquid that this function is related to fluctuations in a bulk
dynamical variable. We evaluate this function using computer simulations of an
equilibrium glass-forming liquid, and show that long range spatial correlations
of displacements emerge and grow on cooling toward the mode coupling critical
temperature
Nonequilibrium stationary states with Gibbs measure for two or three species of interacting particles
We construct explicit examples of one-dimensional driven diffusive systems
for two and three species of interacting particles, defined by asymmetric
dynamical rules which do not obey detailed balance, but whose nonequilibrium
stationary-state measure coincides with a prescribed equilibrium Gibbs measure.
For simplicity, the measures considered in this construction only involve
nearest-neighbor interactions. For two species, the dynamics thus obtained
generically has five free parameters, and does not obey pairwise balance in
general. The latter property is satisfied only by the totally asymmetric
dynamics and the partially asymmetric dynamics with uniform bias, i.e., the
cases originally considered by Katz, Lebowitz, and Spohn. For three species of
interacting particles, with nearest-neighbor interactions between particles of
the same species, the totally asymmetric dynamics thus obtained has two free
parameters, and obeys pairwise balance. These models are put in perspective
with other examples of driven diffusive systems. The emerging picture is that
asymmetric (nonequilibrium) stochastic dynamics leading to a given
stationary-state measure are far more constrained (in terms of numbers of free
parameters) than the corresponding symmetric (equilibrium) dynamics.Comment: 18 pages, 8 tables, 1 figure. Stylistic and other minor improvement
- …