4,085 research outputs found

    An updated analysis of NN elastic scattering data to 1.6 GeV

    Full text link
    An energy-dependent and set of single-energy partial-wave analyses of NNNN elastic scattering data have been completed. The fit to 1.6~GeV has been supplemented with a low-energy analysis to 400 MeV. Using the low-energy fit, we study the sensitivity of our analysis to the choice of πNN\pi NN coupling constant. We also comment on the possibility of fitting npnp data alone. These results are compared with those found in the recent Nijmegen analyses. (Figures may be obtained from the authors upon request.)Comment: 17 pages of text, VPI-CAPS-7/

    The NN scattering 3S1-3D1 mixing angle at NNLO

    Full text link
    The 3S1-3D1 mixing angle for nucleon-nucleon scattering, epsilon_1, is calculated to next-to-next-to-leading order in an effective field theory with perturbative pions. Without pions, the low energy theory fits the observed epsilon_1 well for momenta less than 50\sim 50 MeV. Including pions perturbatively significantly improves the agreement with data for momenta up to 150\sim 150 MeV with one less parameter. Furthermore, for these momenta the accuracy of our calculation is similar to an effective field theory calculation in which the pion is treated non-perturbatively. This gives phenomenological support for a perturbative treatment of pions in low energy two-nucleon processes. We explain why it is necessary to perform spin and isospin traces in d dimensions when regulating divergences with dimensional regularization in higher partial wave amplitudes.Comment: 17 pages, journal versio

    A Search for Nitrogen-Enhanced Metal-Poor Stars

    Get PDF
    Theoretical models of very metal-poor intermediate-mass Asymptotic Giant Branch (AGB) stars predict a large overabundance of primary nitrogen. The very metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the polluted companions of now-extinct AGB stars, provide direct tests of the predictions of these models. Recent studies of the carbon and nitrogen abundances in metal-poor stars have focused on the most carbon-rich stars, leading to a potential selection bias against stars that have been polluted by AGB stars that produced large amounts of nitrogen, and hence have small [C/N] ratios. We call these stars Nitrogen-Enhanced Metal-Poor (NEMP) stars, and define them as having [N/Fe] > +0.5 and [C/N] < -0.5. In this paper, we report on the [C/N] abundances of a sample of 21 carbon-enhanced stars, all but three of which have [C/Fe] < +2.0. If NEMP stars were made as easily as Carbon-Enhanced Metal-Poor (CEMP) stars, then we expected to find between two and seven NEMP stars. Instead, we found no NEMP stars in our sample. Therefore, this observational bias is not an important contributor to the apparent dearth of N-rich stars. Our [C/N] values are in the same range as values reported previously in the literature (-0.5 to +2.0), and all stars are in disagreement with the predicted [C/N] ratios for both low-mass and high-mass AGB stars. We suggest that the decrease in [C/N] from the low-mass AGB models is due to enhanced extra-mixing, while the lack of NEMP stars may be caused by unfavorable mass ratios in binaries or the difficulty of mass transfer in binary systems with large mass ratios.Comment: 14 pages, 7 figures, to be published in Ap

    Isoscalar off-shell effects in threshold pion production from pd collisions

    Get PDF
    We test the presence of pion-nucleon isoscalar off-shell effects in the pdπ+tpd\to \pi^+ t reaction around the threshold region. We find that these effects significantly modify the production cross section and that they may provide the missing strength needed to reproduce the data at threshold.Comment: 6 pages, REVTeX, twocolumn, including 3 figures (Postscript), uses psfig, updated and extended versio

    One-Dimensional Partially Asymmetric Simple Exclusion Process on a Ring with a Defect Particle

    Full text link
    The effect of a moving defect particle for the one-dimensional partially asymmetric simple exclusion process on a ring is considered. The current of the ordinary particles, the speed of the defect particle and the density profile of the ordinary particles are calculated exactly. The phase diagram for the correlation length is identified. As a byproduct, the average and the variance of the particle density of the one-dimensional partially asymmetric simple exclusion process with open boundaries are also computed.Comment: 23 pages, 1 figur

    Temperley-Lieb Words as Valence-Bond Ground States

    Full text link
    Based on the Temperley--Lieb algebra we define a class of one-dimensional Hamiltonians with nearest and next-nearest neighbour interactions. Using the regular representation we give ground states of this model as words of the algebra. Two point correlation functions can be computed employing the Temperley--Lieb relations. Choosing a spin-1/2 representation of the algebra we obtain a generalization of the (q-deformed) Majumdar--Ghosh model. The ground states become valence-bond states.Comment: 9 Pages, LaTeX (with included style files

    Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap

    Get PDF
    We have trapped cesium atoms over many minutes in the focus of a CO2_2-laser beam employing an extremely simple laser system. Collisional properties of the unpolarized atoms in their electronic ground state are investigated. Inelastic binary collisions changing the hyperfine state lead to trap loss which is quantitatively analyzed. Elastic collisions result in evaporative cooling of the trapped gas from 25 μ\muK to 10 μ\muK over a time scale of about 150 s.Comment: 5 pages, 3 figure

    Nucleon-Nucleon Optical Model for Energies to 3 GeV

    Get PDF
    Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T-lab below 300$ MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T-lab above 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure

    Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition

    Full text link
    We define a correlation function that quantifies the spatial correlation of single-particle displacements in liquids and amorphous materials. We show for an equilibrium liquid that this function is related to fluctuations in a bulk dynamical variable. We evaluate this function using computer simulations of an equilibrium glass-forming liquid, and show that long range spatial correlations of displacements emerge and grow on cooling toward the mode coupling critical temperature

    Nonequilibrium stationary states with Gibbs measure for two or three species of interacting particles

    Full text link
    We construct explicit examples of one-dimensional driven diffusive systems for two and three species of interacting particles, defined by asymmetric dynamical rules which do not obey detailed balance, but whose nonequilibrium stationary-state measure coincides with a prescribed equilibrium Gibbs measure. For simplicity, the measures considered in this construction only involve nearest-neighbor interactions. For two species, the dynamics thus obtained generically has five free parameters, and does not obey pairwise balance in general. The latter property is satisfied only by the totally asymmetric dynamics and the partially asymmetric dynamics with uniform bias, i.e., the cases originally considered by Katz, Lebowitz, and Spohn. For three species of interacting particles, with nearest-neighbor interactions between particles of the same species, the totally asymmetric dynamics thus obtained has two free parameters, and obeys pairwise balance. These models are put in perspective with other examples of driven diffusive systems. The emerging picture is that asymmetric (nonequilibrium) stochastic dynamics leading to a given stationary-state measure are far more constrained (in terms of numbers of free parameters) than the corresponding symmetric (equilibrium) dynamics.Comment: 18 pages, 8 tables, 1 figure. Stylistic and other minor improvement
    corecore