12,964 research outputs found
The Ionic Charge State Composition at High Energies in Large Solar Energetic Particle Events in Solar Cycle 23
The ionic charge states of solar energetic particles (SEPs) depend upon the temperature of the source material and on the environment encountered during acceleration and transport during which electron stripping may occur. Measurements of SEP charge states at relatively high energies (≳15 MeV/nucleon) are possible with the Mass Spectrometer Telescope (MAST) on the Solar, Anomalous, and Magnetospheric Particle Explorer satellite by using the Earth's magnetic field as a particle rigidity filter. Using MAST data, we have determined ionic charge states of Fe and other elements in several of the largest SEP events of solar cycle 23. The charge states appear to be correlated with elemental abundances, with high charge states (~20 for Fe) for all elements in large Fe-rich events. We review the geomagnetic filter technique and summarize the results from MAST to date, with particular emphasis on new measurements in the very large 14 July 2000 SEP event. We compare the charge states determined by MAST with other measurements and with those expected from equilibrium calculations
Elemental and isotopic fractionation in 3He-rich solar energetic particle events
Using data from the Solar Isotope Spectrometer (SIS) on the Advanced Composition Explorer (ACE) mission, heavy ion composition measurements have been made in 26^3He-rich solar energetic particle (SEP) events that occurred between 1998 and 2004. Relative abundances of 13 elements from C through Ni have been investigated, as have the isotopic compositions of the elements Ne and Mg. We find a general tendency for the abundances to follow trends similar to those found in gradual SEP events, in which fractionation can be represented in the form of a power-law in Q/M. However several deviations from this pattern are noted that may provide useful diagnostics of the acceleration process occurring in solar flares
Heavy-ion Fractionation in the Impulsive Solar Energetic Particle Event of 2002 August 20: Elements, Isotopes, and Inferred Charge States
Measurements of heavy-ion elemental and isotopic composition in the energy range ~12-60 MeV nucleon^(–1) are reported from the Advanced Composition Explorer/Solar Isotope Spectrometer (ACE/SIS) instrument for the solar energetic particle (SEP) event of 2002 August 20. We investigate fractionation in this particularly intense impulsive event by examining the enhancements of elemental and isotopic abundance ratios relative to corresponding values in the solar wind. The elemental enhancement pattern is similar to those in other impulsive events detected by ACE/SIS and in compilations of average impulsive-event composition. For individual elements, the abundance of a heavy isotope (mass M_2) is enhanced relative to that of a lighter isotope (M_1) by a factor ~(M_(1)/M_2)^α with α ≃ 15. Previous studies have reported elemental abundance enhancements organized as a power law in Q/M, the ratio of estimated ionic charge to mass in the material being fractionated. We consider the possibility that a fractionation law of this form could be responsible for the isotopic fractionation as a power law in the mass ratio and then explore the implications it would have for the ionic charge states in the source material. Assuming that carbon is fully stripped (Q_C = 6), we infer mean values of the ionic charge during the fractionation process, Q_Z , for a variety of elements with atomic numbers 7 ≤ Z ≤ 28. We find that Q_(Fe) ≃ 21-22, comparable to the highest observed values that have been reported at lower energies in impulsive SEP events from direct measurements near 1 AU. The inferred charge states as a function of Z are characterized by several step increases in the number of attached electrons, Z – Q_Z . We discuss how this step structure, together with the known masses of the elements, might account for a variety of features in the observed pattern of elemental abundance enhancements. We also briefly consider alternative fractionation laws and the relationship between the charge states we infer in the source material and those derived from in situ observations
Addressing student models of energy loss in quantum tunnelling
We report on a multi-year, multi-institution study to investigate student
reasoning about energy in the context of quantum tunnelling. We use ungraded
surveys, graded examination questions, individual clinical interviews, and
multiple-choice exams to build a picture of the types of responses that
students typically give. We find that two descriptions of tunnelling through a
square barrier are particularly common. Students often state that tunnelling
particles lose energy while tunnelling. When sketching wave functions, students
also show a shift in the axis of oscillation, as if the height of the axis of
oscillation indicated the energy of the particle. We find inconsistencies
between students' conceptual, mathematical, and graphical models of quantum
tunnelling. As part of a curriculum in quantum physics, we have developed
instructional materials to help students develop a more robust and less
inconsistent picture of tunnelling, and present data suggesting that we have
succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb
10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with
revisions that include an appendix with the curriculum materials discussed in
the paper (4 page small group UW-style tutorial
A novel technique to infer ionic charge states of solar energetic particles
In some large solar energetic particle (SEP) events, the intensities of higher energy SEPs decay more rapidly than at lower energies. This energy dependence varies with particle species, as would be expected if the decay timescale depended on a rigidity-dependent diffusion mean free path. By comparing the decay timescales of carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron, mean charge states are inferred for these (and other) elements in three SEP events between 1997 and 2002 at energies between 10 and 200 MeV nucleon−1. In a fourth event, upper limits for the charge states are inferred. The charge states of many different particle species are all consistent with a single source temperature; in two events in 1997 and 2002, the best-fit temperature is much higher than that of the corona, which could imply a contribution from solar flare material. However, comparison with lower energy iron charge states for the 1997 event implies that the observed high-energy charge state could also be understood as the result of stripping during shock acceleration in the corona
The Isotopic Composition of Anomalous and Galactic Cosmic Rays from SAMPEX
New measurements of the anomalous cosmic ray (ACR) isotopic composition
are presented, using data from the Mass Spectrometer Telescope (MAST) on
SAMPEX. At high invariant latitudes or in interplanetary space, ACR isotopic
composition measurements require correction for contamination from galactic
cosmic rays (GCRs); however, at lower latitudes singly-charged ACRs can penetrate
the Earth's magnetic field while fully stripped GCRs of similar energies
are excluded, allowing us to study a pure ACR sample. Preliminary values
for ACRs obtained using this geomagnetic filter approach are: ^(15)N /N < 0.032, ^(18)0/^(16)0 < 0.0057, and ^(22)Ne = ^(20)Ne = 0.087(+0.137, -0.026). We compare our
values with those found by previous investigators and with those measured in
other samples of solar and galactic material
SAMPEX Observations of Geomagnetically Trapped Anomalous Cosmic Rays
We summarize observations of trapped anomalous cosmic rays made with the Mass Spectrometer Telescope (MASn on the polar-orbiting SAMPEX spacecraft during late 1992 and early 1993. MAST observes a trapped population of heavy ions with ~15 MeV/nuc that includes N, 0, and Ne, but very little C, located in a narrow belt at L=2. The characteristics of
this radiation belt are generally consistent with those expected from the mechanism proposed by Blake and Friesen for trapping anomalous cosmic rays in the magnetosphere and with COSMOS observations made during the last solar minimum. We discuss the location, composition, and temporal history of the trapped heavy ions observed with SAMPEX and
compare them with properties of anomalous cosmic rays observed in the interplanetary medium. Although trapped He ions are also observed by MAST, it appears likely that they
have a different origin
The Solar Energetic Particle Event of 6 May 1998
The abundances of elements from helium to iron have been measured in more than a dozen moderate to large solar energetic particle (SEP) events using the Solar Isotope Spectrometer (SIS) on-board the Advanced Composition Explorer (ACE). Time variations within some of these events and from event to event have been reported previously. This paper presents an analysis of the event of 6 May 1998, for which relatively time-independent abundance ratios are found. This event has been considered to be an example of an impulsive event, a gradual event, and as a hybrid of the two. Difficulties with classifying this event are discussed
Observations of Anomalous Cosmic Rays at 1 AU
Anomalous cosmic rays (ACRs) provide a sensitive probe of the access of energetic particles to the inner heliosphere, varying in intensity by more than two orders of magnitude during the course of the solar cycle. New data which are becoming available from the Advanced Composition Explorer (ACE) can provide a detailed record of ACR intensity and spectral changes on short (~ 1 day) time scales during the approach to solar maximum, which will help address issues of ACR modulation and transport. The elemental and isotopic composition of ACRs provides important information on the source or sources of these particles, while their ionic charge state composition and its energy dependence
serves as a diagnostic of their acceleration time scale. We review measurements of the ACR elemental, isotopic,
and charge state composition and spectra as determined at 1 AU by SAMPEX, ACE, Wind, and other spacecraft. These
results are important input to models of the acceleration, modulation, and transport of ACRs
STEREO and ACE Observations of Energetic Particles from Corotating Interaction Regions
Since early 2007, significant particle enhancements due to corotating interaction regions (CIRs) have regularly appeared at 1 AU without any appreciable contamination from solar energetic particles (SEPs). In 2009 the prevalence of CIRs diminished as the maximum speed of the high speed solar wind streams in the ecliptic decreased along with the tilt of the heliospheric current sheet. Observations of CIR time profiles at different longitudes from STEREO show delays between the Behind and Ahead spacecraft that are often roughly as expected from the corotation time lag, although small differences in the spacecraft latitudes introduce significant scatter in the time delays. In some cases different features seen at Ahead and Behind suggest that transient disturbances in the solar wind may alter connection to or transport from the shock, or that temporal changes occur in the CIR shock itself. H and He data from STEREO/LET at 1.8–6 MeV/nucleon show that 1) the CIR spectral index at these energies is ~−4, independent of intensity but with considerable variability, 2) the He/H ratio is ~0.03 for larger CIRs but varies systematically with energy and event intensity, and 3) although the correlation between the CIR MeV particle increases and solar wind speed is generally good, many times a high-speed stream is not associated with MeV particles, while at other times a recurring series of CIR particle increases appears only at higher energies and may be associated with current sheet crossings and low speed solar wind
- …