667 research outputs found
Neutrino texture saturating the CP asymmetry
We study a neutrino mass texture which can explain the neutrino oscillation
data and also saturate the upper bound of the CP asymmetry in the
leptogenesis. We consider the thermal and non-thermal leptogenesis based on the
right-handed neutrino decay in this model. A lower bound of the reheating
temperature required for the explanation of the baryon number asymmetry is
estimated as GeV for the thermal leptogenesis and GeV for
the non-thermal one.It can be lower than the upper bound of the reheating
temperature imposed by the cosmological gravitino problem. An example of the
construction of the discussed texture is also presented.Comment: 23 pages, 6 figure
Chromospheric polarimetry through multi-line observations of the 850 nm spectral region
Future solar missions and ground-based telescopes aim to understand the
magnetism of the solar chromosphere. We performed a supporting study in
Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we
concluded that is one of the best candidates because it is sensitive to a large
range of atmospheric heights, from the photosphere to the middle chromosphere.
However, we believe that it is worth to try improving the results produced by
this line observing additional spectral lines. In that regard, we examined the
neighbour solar spectrum looking for spectral lines that could increase the
sensitivity to the atmospheric parameters. Interestingly, we discovered several
photospheric lines that greatly improve the photospheric sensitivity to the
magnetic field vector. Moreover, they are located close to a second
chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca
II 8498 A line, and enhances the sensitivity to the atmospheric parameters at
chromospheric layers. We conclude that the lines in the vicinity of the Ca II
8542 A line not only increase its sensitivity to the atmospheric parameters at
all layers, but also they constitute an excellent spectral window for
chromospheric polarimetry.Comment: 11 pages, 8 figures, 1 tabl
Solar polarimetry through the K I lines at 770 nm
We characterize the K I D1 & D2 lines in order to determine whether they
could complement the 850 nm window, containing the Ca II infrared triplet lines
and several Zeeman sensitive photospheric lines, that was studied previously.
We investigate the effect of partial redistribution on the intensity profiles,
their sensitivity to changes in different atmospheric parameters, and the
spatial distribution of Zeeman polarization signals employing a realistic
magnetohydrodynamic simulation. The results show that these lines form in the
upper photosphere at around 500 km and that they are sensitive to the line of
sight velocity and magnetic field strength at heights where neither the
photospheric lines nor the Ca II infrared lines are. However, at the same time,
we found that their sensitivity to the temperature essentially comes from the
photosphere. Then, we conclude that the K I lines provide a complement to the
lines in the 850 nm window for the determination of atmospheric parameters in
the upper photosphere, especially for the line of sight velocity and the
magnetic field.Comment: 10 pages, 9 figures, main journal publicatio
Chromospheric polarimetry through multi-line observations of the 850 nm spectral region II: A magnetic flux tube scenario
In this publication we continue the work started in Quintero Noda et al.
(2017) examining this time a numerical simulation of a magnetic flux tube
concentration. Our goal is to study if the physical phenomena that take place
in it, in particular, the magnetic pumping, leaves a specific imprint on the
examined spectral lines. We find that the profiles from the interior of the
flux tube are periodically dopplershifted following an oscillation pattern that
is also reflected in the amplitude of the circular polarization signals. In
addition, we analyse the properties of the Stokes profiles at the edges of the
flux tube discovering the presence of linear polarization signals for the Ca II
lines, although they are weak with an amplitude around 0.5% of the continuum
intensity. Finally, we compute the response functions to perturbations in the
longitudinal field and we estimate the field strength using the weak field
approximation. Our results indicate that the height of formation of the
spectral lines changes during the magnetic pumping process which makes the
interpretation of the inferred magnetic field strength and its evolution more
difficult. These results complement those from previous works demonstrating the
capabilities and limitations of the 850 nm spectrum for chromospheric Zeeman
polarimetry in a very dynamic and complex atmosphere.Comment: 12 pages, 12 figures, 0 tables, MNRAS main journal publicatio
Study of the polarization produced by the Zeeman effect in the solar Mg I b lines
The next generation of solar observatories aim to understand the magnetism of
the solar chromosphere. Therefore, it is crucial to understand the polarimetric
signatures of chromospheric spectral lines. For this purpose, we here examine
the suitability of the three Fraunhofer Mg I b1, b2, and b4 lines at 5183.6,
5172.7, and 5167.3 A, respectively. We start by describing a simplified atomic
model of only 6 levels and 3 line transitions for computing the atomic
populations of the 3p-4s (multiplet number 2) levels involved in the Mg I b
line transitions assuming non-local thermodynamic conditions and considering
only the Zeeman effect using the field-free approximation. We test this
simplified atom against more complex ones finding that, although there are
differences in the computed profiles, they are small compared with the
advantages provided by the simple atom in terms of speed and robustness. After
comparing the three Mg I lines, we conclude that the most capable one is the b2
line as b1 forms at similar heights and always show weaker polarization signals
while b4 is severely blended with photospheric lines. We also compare Mg I b2
with the K I D1 and Ca II 8542 A lines finding that the former is sensitive to
the atmospheric parameters at heights that are in between those covered by the
latter two lines. This makes Mg I b2 an excellent candidate for future
multi-line observations that aim to seamlessly infer the thermal and magnetic
properties of different features in the lower solar atmosphere.Comment: 14 pages, 11 figures, and 5 table
- …