493 research outputs found

    Anisotropic imbibition on surfaces patterned with polygonal posts

    Full text link
    We present and interpret lattice Boltzmann simulations of thick films spreading on surfaces patterned with polygonal posts. We show that the mechanism of pinning and depinning differs with the direction of advance, and demonstrate that this leads to anisotropic spreading within a certain range of material contact angles.Comment: DSFD Proceedings 201

    Nanoflows through disordered media: a joint Lattice Boltzmann and Molecular Dynamics investigation

    Full text link
    We investigate nanoflows through dilute disordered media by means of joint lattice Boltzmann (LB) and molecular dynamics (MD) simulations -- when the size of the obstacles is comparable to the size of the flowing particles -- for randomly located spheres and for a correlated particle-gel. In both cases at sufficiently low solid fraction, Φ<0.01\Phi<0.01, LB and MD provide similar values of the permeability. However, for Φ>0.01\Phi > 0.01, MD shows that molecular size effects lead to a decrease of the permeability, as compared to the Navier-Stokes predictions. For gels, the simulations highlights a surplus of permeability, which can be accommodated within a rescaling of the effective radius of the gel monomers.Comment: 4 pages, 4 figure

    Three-dimensional central-moments-based lattice Boltzmann method with external forcing: A consistent, concise and universal formulation

    Full text link
    The cascaded or central-moments-based lattice Boltzmann method (CM-LBM) is a robust alternative to the more conventional BGK-LBM for the simulation of high-Reynolds number flows. Unfortunately, its original formulation makes its extension to a broader range of physics quite difficult. To tackle this issue, a recent work [A. De Rosis, Phys. Rev. E 95, 013310 (2017)] proposed a more generic way to derive concise and efficient three-dimensional CM-LBMs. Knowing the original model also relies on central moments that are derived in an adhoc manner, i.e., by mimicking those of the Maxwell-Boltzmann distribution to ensure their Galilean invariance a posteriori, a very recent effort [A. De Rosis and K. H. Luo, Phys. Rev. E 99, 013301 (2019)] was proposed to further generalize their derivation. The latter has shown that one could derive Galilean invariant CMs in a systematic and a priori manner by taking into account high-order Hermite polynomials in the derivation of the discrete equilibrium state. Combining these two approaches, a compact and mathematically sound formulation of the CM-LBM with external forcing is proposed. More specifically, the proposed formalism fully takes advantage of the D3Q27 discretization by relying on the corresponding set of 27 Hermite polynomials (up to the sixth order) for the derivation of both the discrete equilibrium state and the forcing term. The present methodology is more consistent than previous approaches, as it properly explains how to derive Galilean invariant CMs of the forcing term in an a priori manner. Furthermore, while keeping the numerical properties of the original CM-LBM, the present work leads to a compact and simple algorithm, representing a universal methodology based on CMs and external forcing within the lattice Boltzmann framework.Comment: Published in Phys. Fluids as Editor's Pic

    Roughness induced boundary slip in microchannel flows

    Get PDF
    Surface roughness becomes relevant if typical length scales of the system are comparable to the scale of the variations as it is the case in microfluidic setups. Here, an apparent boundary slip is often detected which can have its origin in the assumption of perfectly smooth boundaries. We investigate the problem by means of lattice Boltzmann (LB) simulations and introduce an ``effective no-slip plane'' at an intermediate position between peaks and valleys of the surface. Our simulations show good agreement with analytical results for sinusoidal boundaries, but can be extended to arbitrary geometries and experimentally obtained surface data. We find that the detected apparent slip is independent of the detailed boundary shape, but only given by the distribution of surface heights. Further, we show that the slip diverges as the amplitude of the roughness increases.Comment: 4 pages, 6 figure

    Simulation of fluid flow in hydrophobic rough microchannels

    Full text link
    Surface effects become important in microfluidic setups because the surface to volume ratio becomes large. In such setups the surface roughness is not any longer small compared to the length scale of the system and the wetting properties of the wall have an important influence on the flow. However, the knowledge about the interplay of surface roughness and hydrophobic fluid-surface interaction is still very limited because these properties cannot be decoupled easily in experiments. We investigate the problem by means of lattice Boltzmann (LB) simulations of rough microchannels with a tunable fluid-wall interaction. We introduce an ``effective no-slip plane'' at an intermediate position between peaks and valleys of the surface and observe how the position of the wall may change due to surface roughness and hydrophobic interactions. We find that the position of the effective wall, in the case of a Gaussian distributed roughness depends linearly on the width of the distribution. Further we are able to show that roughness creates a non-linear effect on the slip length for hydrophobic boundaries.Comment: 10 pages, 5 figure

    Excised acoustic black holes: the scattering problem in the time domain

    Full text link
    The scattering process of a dynamic perturbation impinging on a draining-tub model of an acoustic black hole is numerically solved in the time domain. Analogies with real black holes of General Relativity are explored by using recently developed mathematical tools involving finite elements methods, excision techniques, and constrained evolution schemes for strongly hyperbolic systems. In particular it is shown that superradiant scattering of a quasi-monochromatic wavepacket can produce strong amplification of the signal, offering the possibility of a significant extraction of rotational energy at suitable values of the angular frequency of the vortex and of the central frequency of the wavepacket. The results show that theoretical tools recently developed for gravitational waves can be brought to fruition in the study of other problems in which strong anisotropies are present.Comment: 8 pages, 9 figure

    Lattice Boltzmann scheme for relativistic fluids

    Full text link
    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.Comment: Submitted to PR

    Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels

    Full text link
    Various experiments have found a boundary slip in hydrophobic microchannel flows, but a consistent understanding of the results is still lacking. While Molecular Dynamics (MD) simulations cannot reach the low shear rates and large system sizes of the experiments, it is often impossible to resolve the needed details with macroscopic approaches. We model the interaction between hydrophobic channel walls and a fluid by means of a multi-phase lattice Boltzmann model. Our mesoscopic approach overcomes the limitations of MD simulations and can reach the small flow velocities of known experiments. We reproduce results from experiments at small Knudsen numbers and other simulations, namely an increase of slip with increasing liquid-solid interactions, the slip being independent of the flow velocity, and a decreasing slip with increasing bulk pressure. Within our model we develop a semi-analytic approximation of the dependence of the slip on the pressure.Comment: 7 pages, 4 figure
    • …
    corecore