1,654 research outputs found

    Dokumentation 10 Jahre Leitbetriebe Ă–kologischer Landbau in Nordrhein-Westfalen

    Get PDF
    Inhaltsverzeichnis: Einleitung Ulrich Köpke Projekt „Leitbetriebe Ökologischer Landbau in NRW“: Forschung – Demonstration – Wissenstransfer Christoph Stumm, Martin Berg, Holger Schenke, Axel Schauder & Ulrich Köpke Volltext abrufbar unter https://orgprints.org/00002294/ Ökologischer Landbau in Nordrhein-Westfalen: Produktionsstruktur und räumliche Verteilung Guido Haas, Corinna Zerger, Karl Kempkens & Ulrich Köpke Volltext abrufbar unter https://orgprints.org/00001844/ Betriebsmanagement im Ökologischen Landbau: Analyse und Planung von Praxisbetrieben Guido Haas Volltext abrufbar unter https://orgprints.org/00002296/ Getreidebau Martin Berg, Holger Schenke, Jons Eisele, Edmund Leisen & Andreas Paffrath Volltext abrufbar unter https://orgprints.org/00001221/ Stickstoffmanagement im ökologisch wirtschaftenden Betrieb: Minderung von Stickstoffverlusten Martin Berg, Guido Haas, Edmund Leisen & Holger Schenke Volltext abrufbar unter https://orgprints.org/00002295/ Kartoffelanbau Andreas Paffrath, Edmund Leisen, Alfons Peine, Christine Vorländer, Martin Berg & Daniel Neuhoff Volltext abrufbar unter https://orgprints.org/00002299/ Untersaaten in Kartoffeln: Sonnenblume, Mais oder Gelbsenf Guido Haas Volltext abrufbar unter https://orgprints.org/00002322/ Anbau von Feldgemüse Andreas Paffrath, Edmund Leisen, Markus Puffert & Felix Lipper Volltext abrufbar unter https://orgprints.org/00002303/ Grünland und Futterbau Edmund Leisen Volltext abrufbar unter https://orgprints.org/00002304/ Rotkleegras: Arten- und Sortenwahl der Gräser Guido Haas Volltext abrufbar unter https://orgprints.org/00002323/ Milchviehhaltung Edmund Leisen & Peter Heimberg Volltext abrufbar unter https://orgprints.org/00002305/ Ausblick Ulrich Köpke & Karl Kempken

    Specific Chemical Interaction Affecting the Stability of Dispersed Systems

    Get PDF
    1) Sorbable species may destabilize colloids at much lower concentrations than nonsorbable ions. The VODL double layer model neglects the dominating role that chemical forces play in causing adsorption and is restricted in its application to lyophilic colloids and simple electrolytes. 2) The distribution of ions in an oxide-electrolyte interface can be evaluated from alkalimetric and acidimetric titration curves of aqueous dispersions of these oxides. 3) A comparison of the differential capacity of the interface at an oxide-electrolyte interface with that of Hg or Ag! shows much larger capacitance values for the hydrophilic strongly aquated oxide surface than for the more hydrophobic surface of Hg and Ag!. The difference is caused primarily by the strongly structured, extensively hydrogen-bonded and chemisorbed water layer immediately adjacent to the solid oxide surface. Ions tend strongly to penetrate (specific sorption) into the compact part of the double layer adjoining the oxide surface, and may thus exert a marked effect on the surface chemical properties beyond those observed by a mere compaction of the diffuse part of the double layer. 4) Association of oxide surfaces with H+, and other cations can, similar as with polyelectrolytes, be characterized by acidity and stability constants. The latter constants can be expressed as intrinsic constants if they are corrected to a hypothetically chargeless surface. The specificity of the interaction with H+ and cations can be understood by considering simple electrostatic models. This association of oxide surfaces with cations can be used to explain the effect of cations such as Ca2+ on the stability of hydrous oxide colloids, and on the deposition of Mn02 particles on sand surfa ces. The extent to which a coagulant species is specifically adsorbed is reflected in the c. c. c. necessary to produce a ggregation. When the specifically adsorbed species and the colloid are of opposite charge, the sorbed species act to reduce the surface charge of the colloid. The destabilizing agent can, in some cases, even reverse the colloid charge and restabilization will occur. 5) Specific cation interactions as described here represent a basis of related ion specific processes, such as the behavior of ion selective glass or membrane electrodes; the selective ion permeability of cell membranes and potential generating mechanisms in the living cell

    Devonian Trilobites from Northwestern Ohio, Northern Michigan, and Western New York

    Full text link
    109-122http://deepblue.lib.umich.edu/bitstream/2027.42/48411/2/ID258.pd

    Four New Species of Rugose Corals of the Middle Devonian Genus Eridophyllum, from New York, Michigan, and Ohio

    Full text link
    1-11http://deepblue.lib.umich.edu/bitstream/2027.42/48286/2/ID126.pd

    Corals of the Devonian Traverse Group of Michigan. Part III, Antholites, Pleurodictyum, and Procteria

    Full text link
    205-220http://deepblue.lib.umich.edu/bitstream/2027.42/48251/2/ID090.pd

    A Devonian Species of Heliolites from Nevada

    Full text link
    223-228http://deepblue.lib.umich.edu/bitstream/2027.42/48285/2/ID124.pd

    Tabulate Corals of the Silica Shale (Middle Devonian) of Northwestern Ohio and Southeastern Michigan

    Full text link
    86-104http://deepblue.lib.umich.edu/bitstream/2027.42/48409/2/ID256.pd

    New Rugose Corals from the Middle and Upper Devonian of New York

    Full text link
    161-163http://deepblue.lib.umich.edu/bitstream/2027.42/48570/2/ID427.pd

    The Corals of the Middle Devonian Tenmile Creek Dolomite of Northwestern Ohio

    Full text link
    37-44http://deepblue.lib.umich.edu/bitstream/2027.42/48420/2/ID268.pd
    • …
    corecore