26 research outputs found

    Demonstration of a Novel HIV-1 Restriction Phenotype from a Human T Cell Line

    Get PDF
    Although retroviruses may invade host cells, a productive infection can be established only after the virus counteracts inhibition from different types of host restriction factors. Fv1, APOBEC3G/F, TRIM5alpha, ZAP, and CD317 inhibit the replication of different retroviruses by interfering with viral uncoating, reverse transcription, nuclear import, RNA stability, and release. In humans, although APOBEC3G/3F and CD317 block HIV-1 replication, their antiviral activities are neutralized by viral proteins Vif and Vpu. So far, no human gene has been found to effectively block wild type HIV-1 replication under natural condition. Thus, identification of such a gene product would be of great medical importance for the development of HIV therapies.In this study, we discovered a new type of host restriction against the wild type HIV-1 from a CD4/CXCR4 double-positive human T cell line. We identified a CEM-derived cell line (CEM.NKR) that is highly resistant to productive HIV-1 infection. Viral production was reduced by at least 1000-fold when compared to the other permissive human T cell lines such as H9, A3.01, and CEM-T4. Importantly, this resistance was evident at extremely high multiplicity of infection. Further analyses demonstrated that HIV-1 could finish the first round of replication in CEM.NKR cells, but the released virions were poorly infectious. These virions could enter the target cells, but failed to initiate reverse transcription. Notably, this restriction phenotype was also present in CEM.NKR and 293T heterokaryons.These results clearly indicate that CEM.NKR cells express a HIV inhibitory gene(s). Further characterization of this novel gene product(s) will reveal a new antiretroviral mechanism that directly inactivates wild type HIV-1

    Controlled Release of Octreotide and Assessment of Peptide Acylation from Poly(D,L-lactide-co-hydroxymethyl glycolide) Compared to PLGA Microspheres

    Get PDF
    # The Author(s) 2011. This article is published with open access at Springerlink.com Purpose To investigate the in vitro release of octreotide acetate, a somatostatin agonist, from microspheres based on a hydrophilic polyester, poly(D,L-lactide-co-hydroxymethyl glycolide) (PLHMGA). Methods Spherical and non-porous octreotide-loaded PLHMGA microspheres (12 to 16 ÎŒm) and loading efficiency of 60–70% were prepared by a solvent evaporation. Octreotide release profiles were compared with commercial PLGA formulation (Sandostatin LAR Âź); possible peptide modification with lactic, glycolic and hydroxymethyl glycolic acid units was monitored. Results PLHMGA microspheres showed burst release (~20%) followed by sustained release for 20–60 days, depending on the hydrophilicity of the polymer. Percentage of released loaded peptide was high (70–90%);>60 % of released peptide was native octreotide. PLGA microspheres did not show peptide release for the first 10 days, after which it was released in a sustained manner over the next 90 days;>75 % of released peptides were acylated adducts. Conclusions PLHMGA microspheres are promising controlled systems for peptides with excellent control over release kinetics. Moreover, substantially less peptide modification occurred in PLHMGA than in PLGA microspheres. KEY WORDS acylation. aliphatic polyester. controlle

    Local DNA damage by proton microbeam irradiation induces poly(ADP-ribose) synthesis in mammalian cells

    No full text
    Cellular recovery from ionizing radiation (IR)-induced damage involves poly(ADP-ribose) polymerase (PARP-1 and PARP-2) activity, resulting in the induction of a signalling network responsible for the maintenance of genomic integrity. In the present work, a charged particle microbeam delivering 3.2 MeV protons from a Van de Graaff accelerator has been used to locally irradiate mammalian cells. We show the immediate response of PARPs to local irradiation, concomitant with the recruitment of ATM and Rad51 at sites of DNA damage, both proteins being involved in DNA strand break repair. We found a co-localization but no connection between two DNA damage-dependent post-translational modifications, namely poly(ADP-ribosyl)ation of nuclear proteins and phosphorylation of histone H2AX. Both of them, however, should be considered and used as bona fide immediate sensitive markers of IR damage in living cells. This technique thus provides a powerful approach aimed at understanding the interactions between the signals originating from sites of DNA damage and the subsequent activation of DNA strand break repair mechanism

    Deletion of the gene encoding prostamide/prostaglandin F synthase reveals an important role in regulating intraocular pressure

    No full text
    Prostamide/prostaglandin F synthase (PM/PGFS) is an enzyme with very narrow substrate specificity and is dedicated to the biosynthesis of prostamide F2α and prostaglandin F2α (PGF2α.). The importance of this enzyme, relative to the aldo-keto reductase (AKR) series, in providing functional tissue prostamide F2α levels was determined by creating a line of PM/PGFS gene deleted mice. Deletion of the gene encoding PM/PGFS (Fam213b / Prxl2b) was accomplished by a two exon disruption. Prostamide F2α levels in wild type (WT) and PM/PGFS knock-out (KO) mice were determined by LC/MS/MS. Deletion of Fam213b (Prxl2b) had no observed effect on behavior, appetite, or fertility. In contrast, tonometrically measured intraocular pressure was significantly elevated by approximately 4 mmHg in PM/PGFS KO mice compared to littermate WT mice. Outflow facility was measured in enucleated mouse eyes using the iPerfusion system. No effect on pressure dependent outflow facility occurred, which is consistent with the effects of prostamide F2α and PGF2α increasing outflow through the unconventional pathway. The elevation of intraocular pressure caused by deletion of the gene encoding the PM/PGFS enzyme likely results from a diversion of the endoperoxide precursor pathway to provide increased levels of those prostanoids known to raise intraocular pressure, namely prostaglandin D2 (PGD2) and thromboxane A2 (TxA2). It follows that PM/PGFS may serve an important regulatory role in the eye by providing PGF2α and prostamide F2α to constrain the influence of those prostanoids that raise intraocular pressure

    Human Immunodeficiency Virus Type 1 Attachment, Coreceptor, and Fusion Inhibitors Are Active against both Direct and trans Infection of Primary Cells

    No full text
    Inhibitors of human immunodeficiency virus type 1 attachment (CD4-immunoglobulin G subclass 2), CCR5 usage (PRO 140), and fusion (T-20) were tested on diverse primary cell types that represent the major targets both for infection in vivo and for the inhibition of trans infection of target cells by virus bound to dendritic cells. Although minor cell-type-dependent differences in potency were observed, each inhibitor was active on each cell type and trans infection was similarly vulnerable to inhibition at each stage of the fusion cascade

    Short Communication: Neutralizing Antibody Responses in Recent Seroconverters with HIV-1 Subtype C Infections in India

    No full text
    The longitudinal heterologous neutralization response against two HIV-1 subtype C isolates was studied in 33 ART-naive individuals recently infected with HIV-1 subtype C from India. Seven of 33 (21%) seroconverters demonstrated a consistent response against both isolates (65–100% neutralization), whereas the remaining 26 (79%) were nonresponders. Four of the seven responders demonstrated a neutralization response (>75% neutralization) within 2–3 months of infection and in the remaining three, the response was demonstrated between 22 and 38 months after infection. In the past, HIV vaccines targeted the V3 region for the development of neutralizing antibodies. However, recent studies have shown that anti-V3 antibodies are generated after HIV-1 infection, but are not effective in neutralizing virus. In this study, the V3 sequences of HIV-1 from seven responders were analyzed and compared with those from nonresponders. The V3 region sequences from early and late responders did show certain mutations that were not found in the nonresponders; however none of these mutations could explain the neutralization responses. This suggested that HIV-1 envelope regions other than the V3 domain may be involved in generating a neutralization response. This is the first report that describes the pattern of emergence and persistence of the heterologous neutralization response in recently HIV-1 subtype C-infected individuals from India and studies its association with sequence variation in the V3 region
    corecore