7 research outputs found

    Evaluation of the effects of sensory denervation on osteoblasts by 3 H-proline autoradiography

    Full text link
    The inferior alveolar nerve was unilaterally resected in 30-day-old mice; other animals were unilaterally sham-operated. At 15, 30, 60, 90, or 150 days after surgery, the mice were injected with 2μCi of 3 H-proline (sp. act. 1.0 Ci/mM) per g of body weight and killed 15, 30, or 60 min later. Autoradiographs were prepared from 5μm decalcified sagittal sections of mandibles and grain counts made over periosteal osteoblasts mesial to the first molar. In denervated mandibles, osteoblasts incorporated less isotope compared to controls with differences being maximal at the early intervals. These differences became attenuated with time, possibly due to an intrinsic compensatory mechanism, secondary to neurotrophic regulation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47675/1/441_2004_Article_BF00219365.pd

    Effects of denervation on 3 H-fucose incorporation by odontoblasts in the mouse incisor

    Full text link
    The present study was designed to determine the effects of denervation on glycoprotein synthesis in the predentinal matrix of the mouse incisor. The inferior alveolar nerve (IAN), superior cervical ganglion (SCG) or both (IAN+SCG) were unilaterally resected in adult mice with the contralateral side remaining intact as a control. Fourteen days after surgery and 4 h prior to killing, 0.2 mCi of 3 H-fucose was injected intravenously and mandibles were processed for standard histological and autoradiographic techniques. Silver halide grains were counted over the predentin matrix for 2000 μm per tooth. The results showed that the IAN and SCG resection affected 3 H-fucose incorporation into the predentinal matrix; however, the highest absolute mean grain counts occurred after IAN+SCG resection. SCG resection increased the amount of 3 H-fucose incorporated into the predentinal matrix by 48%, that of IAN by 24% and that of IAN+SCG by 14% as compared to contralateral controls. These data indicate a regulatory role for the nervous system and a possible interaction of neural components in the control of glycoprotein synthesis by odontoblasts in the mouse incisor.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47677/1/441_2004_Article_BF00216039.pd
    corecore