2,016 research outputs found
The effect of iron-oxidising bacteria on the stability of gold (I) thiosulphate complex
An acidophilic, iron-oxidising bacterial consortium was collected from Rio Tinto near Berrocal, Spain. This primary enriched culture was used to examine the effect of acidophilic iron-oxidising bacteria on the stability of soluble gold (I) thiosulphate. Stationary phase cultures and separate components of the cultures (i.e., aqueous ferric iron, iron oxyhydroxide precipitates and non-mineralised bacterial cells) were exposed to gold (I) thiosulphate solutions forming different experimental-gold systems. These experimental systems rapidly removed gold from solutions containing 0.002 mM–20 mM gold thiosulphate. Scanning and transmission electron microscopy demonstrated that the different culture fractions immobilised gold differently: the entire bacterial culture-gold systems precipitated 100 nm-size gold colloids; aqueous ferric iron–gold systems precipitated colloidal gold sulphide that ranged in diameter from 200 nm to 2 μm; iron oxyhydroxide-gold systems precipitated 5 nm-size gold sulphide colloids; and the bacteria-gold systems precipitated gold colloids ~ 2 nm in size along the bacterial cell envelope. Aqueous and solid ferric iron was critical in the destabilisation of the gold (I) thiosulphate complex. Analysis of the entire bacterial culture-, aqueous ferric iron- and iron oxyhydroxide-gold systems exposed to 2 mM gold using X-ray absorption near edge spectroscopy demonstrated that Au+ was immobilised from solution as gold sulphide (Au2S). The reaction between iron-oxidising bacteria and their ferric iron by-products with gold (I) thiosulphate demonstrated that thiosulphate ions would be an unstable gold complexing ligand in nature. Gold (I) thiosulphate is intuitively transformed into nanometer-scale gold sulphide or elemental gold within natural, acidic weathering environments with the potential to precipitate gold in jarosite that can subsequently be preserved in gossans over geological time
The bacterial transposon Tn7 causes premature polyadenylation of mRNA in eukaryotic organisms: TAGKO mutagenesis in filamentous fungi
TAGKO is a Tn7-based transposition system for genome wide mutagenesis in filamentous fungi. The effects of transposon insertion on the expression of TAGKO alleles were examined in Magnaporthe grisea and Mycosphaerella graminicola. Northern analysis showed that stable, truncated transcripts were expressed in the TAGKO mutants. Mapping of the 3′-ends of TAGKO cDNAs revealed that they all contain Tn7 end sequences, regardless of the transposon orientation. Polyadenylation signals characteristic of eukaryotic genes, preceded by stop codons in all frames, are located in both ends of the bacterial transposon. Thus, TAGKO transcripts are prematurely polyadenylated, and truncated proteins are predicted to be translated in the fungal mutants. Depending on the extent of protein truncation, TAGKO mutations in HPD4 (encoding p-hydroxyphenylpyruvate dioxygenase) resulted in tyrosine sensitivity in the two fungi. Similarly, a particular M.grisea CBS1 (encoding cystathionine β-synthase) TAGKO cDNA failed to complement cysteine auxotrophy in a yeast CBS mutant. TAGKO, therefore, represents a useful tool for in vivo study of truncated gene products in filamentous fungi.postprin
Westernmost Grand Canyon incision: Testing thermochronometric resolution
The timing of carving of Grand Canyon has been debated for over 100 years with competing endmember hypotheses advocating for either a 70 Ma (“old”) or <6 Ma (“young”) Grand Canyon. Several geological constraints appear to support a “young” canyon model, but thermochronometric measures of cooling history and corresponding estimates of landscape evolution have been in debate. In particular, 4He/3He thermochronometric data record the distribution of radiogenic 4He (from the 238U, 235U and 232Th decay series) within an individual apatite crystal and thus are highly sensitive to the thermal history corresponding to landscape evolution. However, there are several complicating factors that make interpreting such data challenging in geologic scenarios involving reheating. Here, we analyze new data that provide measures of the cooling of basement rocks at the base of westernmost Grand Canyon, and use these data as a testbed for exploring the resolving power and limitations of 4He/3He data in general. We explore a range of thermal histories and find that these data are most consistent with a “young” Grand Canyon. A problem with the recovered thermal history, however, is that burial temperatures are under predicted based on sedimentological evidence. A solution to this problem is to increase the resistance of alpha recoil damage to annealing, thus modifying He diffusion kinetics, allowing for higher temperatures throughout the thermal history. This limitation in quantifying radiation damage (and hence crystal retentivity) introduces non-uniqueness to interpreting time–temperature paths in rocks that resided in the apatite helium partial retention zone for long durations. Another source of non-uniqueness, is due to unknown U and Th distributions within crystals. We show that for highly zoned with a decrease in effective U of 20 ppm over the outer 80% of the radius of the crystal, the 4He/3He data could be consistent with an “old” canyon model. To reduce this non-uniqueness, we obtain U and Th zonation information for separate crystals from the same rock sample through LA-ICP-MS analysis. The observed U and Th distributions are relatively uniform and not strongly zoned, thus supporting a “young” canyon model interpretation of the 4He/3He data. Furthermore, we show that for the mapped zonation, the difference between predicted 4He/3He data for a uniform crystal and a 3D model of the crystal are minimal, highlighting that zonation is unlikely to lead us to falsely infer an “old” Grand Canyon
Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system
In this paper, we study time-optimal control problems related to system of
two coupled qubits where the time scales involved in performing unitary
transformations on each qubit are significantly different. In particular, we
address the case where unitary transformations produced by evolutions of the
coupling take much longer time as compared to the time required to produce
unitary transformations on the first qubit but much shorter time as compared to
the time to produce unitary transformations on the second qubit. We present a
canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1),
which is natural in understanding the time-optimal control problem of such a
coupled qubit system with significantly different time scales. A typical
setting involves dynamics of a coupled electron-nuclear spin system in pulsed
electron paramagnetic resonance experiments at high fields. Using the proposed
canonical decomposition, we give time-optimal control algorithms to synthesize
various unitary transformations of interest in coherent spectroscopy and
quantum information processing.Comment: 8 pages, 3 figure
Phase Locking, Devil's Staircases, Farey Trees, and Arnold Tongues in Driven Vortex Lattices with Periodic Pinning
Using numerical simulations, we observe phase locking, Arnold tongues, and
Devil's staircases for vortex lattices driven at varying angles with respect to
an underlying superconducting periodic pinning array. This rich structure
should be observalble in transport measurments. The transverse curves
have a Devil's staircase structure, with plateaus occurring near the driving
angles along symmetry directions of the pinning array. Each of the plateaus
corresponds to a different dyanmical phase with a distinctive vortex structure
and flow pattern.Comment: accepted to Physical Review Letter
Detrital zircon and apatite (U‐Th)/He geochronology of intercalated baked sediments: a new approach to dating young basalt flows
Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors and their predictive capacity on the outcome of mastitis induced in dairy cows with Escherichia coli.
Four to 6 wk after parturition, 12 cows in second, fourth, or fifth lactation were experimentally infected in one gland with Escherichia coli. The capacity of chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors to predict the severity of IMI was measured. Bacterial counts in the infected quarter, expressed as area under the curve, and residual milk production in the uninfected quarters were compared to determine severity of the infection. Although these two outcome parameters were highly negatively correlated, regression models with preinfection tests for leukocyte function fitted best with bacterial counts as an outcome parameter. Of the preinfection tests for leukocyte function, chemotaxis best predicted the outcome of the IMI that had been experimentally induced by E. coli.
The number of circulating peripheral leukocytes just prior to inoculation was used to predict 52 and 45% of the severity of IMI for bacterial counts and residual milk production, respectively. As a categorical variable, parity predicted 75 and 56% of the severity of IMI expressed as bacterial counts and residual milk production, respectively. Because of the strong effect of parity on the outcome of the experimentally induced mastitis, analysis was performed to discriminate between second parity cows and older cows. Significant differences were found for the number of circulating peripheral leukocytes and for the expression of CD11b/CDl8 and CD11c/CD18 receptors between younger and older cows
Measurements with a noninvasive detector and dephasing mechanism
We study dynamics of the measurement process in quantum dot systems, where a
particular state out of coherent superposition is observed. The ballistic
point-contact placed near one of the dots is taken as a noninvasive detector.
We demonstrate that the measurement process is fully described by the
Bloch-type equations applied to the whole system. These equations clearly
reproduce the collapse of the density-matrix into the statistical mixture in
the course of the measurement process. The corresponding dephasing width is
uniquely defined. We show that the continuous observation of one of the states
in a coherent superposition may accelerate decay from this state -- in
contradiction with rapidly repeated observations, which slow down the
transitions between quantum states (the quantum Zeno effect).Comment: The difference between continuous and rapidly repeated observations
is elaborated. To appear in Phys. Rev.
- …
