9,585 research outputs found

    Escaping the crunch: gravitational effects in classical transitions

    Get PDF
    During eternal inflation, a landscape of vacua can be populated by the nucleation of bubbles. These bubbles inevitably collide, and collisions sometimes displace the field into a new minimum in a process known as a classical transition. In this paper, we examine some new features of classical transitions that arise when gravitational effects are included. Using the junction condition formalism, we study the conditions for energy conservation in detail, and solve explicitly for the types of allowed classical transition geometries. We show that the repulsive nature of domain walls, and the de Sitter expansion associated with a positive energy minimum, can allow for classical transitions to vacua of higher energy than that of the colliding bubbles. Transitions can be made out of negative or zero energy (terminal) vacua to a de Sitter phase, re-starting eternal inflation, and populating new vacua. However, the classical transition cannot produce vacua with energy higher than the original parent vacuum, which agrees with previous results on the construction of pockets of false vacuum. We briefly comment on the possible implications of these results for various measure proposals in eternal inflation.Comment: 21 pages, 10 figure

    Soft Gluon Resummation Effects in Single Graviton Production at the CERN Large Hadron Collider in the Randall-Sundrum Model

    Get PDF
    We study QCD effects in single graviton production at the CERN Large Hadron Collider (LHC) in the Randall-Sundrum (RS) Model. We present in detail the complete next-to-leading order (NLO) QCD corrections to the inclusive total cross sections. The NLO QCD corrections enhance significantly the total cross sections and decrease efficiently the dependence of the total cross sections on the factorization and renormalization scales. We also examine the uncertainty of the total cross sections due to the parton distribution function (PDF) uncertainties. For the differential cross sections on the transverse momentum (qTq_T) of the graviton, within the CSS resummation formalism, we resum the logarithmically-enhanced terms at small qTq_T to all orders up to NLO logatithmic accuracy. Combined with the fixed order calculations, we give consistent predictions for both small qTq_T and large qTq_T.Comment: 26 pages, 13 figures; minor changes and misprints corrected; version to appear in PR

    Towards offering more useful data reliably to mobile cloudfrom wireless sensor network

    Get PDF
    The integration of ubiquitous wireless sensor network (WSN) and powerful mobile cloud computing (MCC) is a research topic that is attracting growing interest in both academia and industry. In this new paradigm, WSN provides data to the cloud, and mobile users request data from the cloud. To support applications involving WSN-MCC integration, which need to reliably offer data that are more useful to the mobile users from WSN to cloud, this paper first identifies the critical issues that affect the usefulness of sensory data and the reliability of WSN, then proposes a novel WSN-MCC integration scheme named TPSS, which consists of two main parts: 1) TPSDT (Time and Priority based Selective Data Transmission) for WSN gateway to selectively transmit sensory data that are more useful to the cloud, considering the time and priority features of the data requested by the mobile user; 2) PSS (Priority-based Sleep Scheduling) algorithm for WSN to save energy consumption so that it can gather and transmit data in a more reliable way. Analytical and experimental results demonstrate the effectiveness of TPSS in improving usefulness of sensory data and reliability of WSN for WSN-MCC integration

    Lanthanum-Mediated Dehydrogenation of 1- and 2-Butynes: Spectroscopy and Formation of La(C\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e) Isomers

    Get PDF
    La atom reactions with 1-butyne and 2-butyne are carried out in a laser-vaporization molecular beam source. Both reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butynes. The dehydrogenated species La(C4H4) is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of La(C4H4) produced from the two reactions exhibit two identical transitions, each consisting of a strong origin band and several vibrational intervals. The two transitions are assigned to the ionization of two isomers: La(η4–CH2CCCH2) (Iso A) and La(η4–CH2CHCCH) (Iso B). The ground electronic states are 2A1 (C2v) for Iso A and 2A (C1) for Iso B. The ionization of the doublet state of each isomer removes a La 6s-based electron and results in a 1A1 ion of Iso A and a 1A ion of Iso B. The formation of Iso A from 2-butyne and Iso B from 1-butyne involves the addition of La to the C≡C triple bond, the activation of two C(sp3)–H bonds, and concerted elimination of a H2 molecule. The formation of Iso A from 1-butyne and Iso B from 2-butyne involves the isomerization of the two butynes to 1,2-butadiene in addition to the concerted H2 elimination

    Quantum Hall Effect on the Hofstadter Butterfly

    Full text link
    Motivated by recent experimental attempts to detect the Hofstadter butterfly, we numerically calculate the Hall conductivity in a modulated two-dimensional electron system with disorder in the quantum Hall regime. We identify the critical energies where the states are extended for each of butterfly subbands, and obtain the trajectory as a function of the disorder. Remarkably, we find that when the modulation becomes anisotropic, the critical energy branches accompanying a change of the Hall conductivity.Comment: 4 pages, 6 figure

    Tag-assisted social-aware opportunistic device-to-device sharing for traffic offloading in mobile social networks

    Get PDF
    Within recent years, the service demand for rich multimedia over mobile networks has kept being soaring at a tremendous pace. To solve the critical problem of mobile traffic explosion, substantial efforts have been made from researchers to try to offload the mobile traffic from infrastructured cellular links to direct short-range communications locally among nearby users. In this article, we discuss the potential of combining users’ online and offline social impacts to exploit the device-to-device (D2D) opportunistic sharing for offloading the mobile traffic. We propose Tag-Assisted Social-Aware D2D sharing framework, TASA, with corresponding optimization models, architecture design, and communication protocols. Through extensive simulations based on real data traces, we demonstrate that TASA can offload up to 78.9% of the mobile traffic effectively
    • …
    corecore