101 research outputs found

    Impact of sodium alginate on binary whey/pea protein-stabilised emulsions

    Full text link
    This study aims to understand impact of sodium alginate addition on binary whey/pea protein-stabilised emulsions at various pH. The properties and stability of binary whey/pea protein-stabilised emulsions were characterised by microstructural analysis, droplet size, creaming index in comparison to sole proteins. Protein composition at oil/water interface was examined via SDS-PAGE. Alginate incorporation reduced the droplet sizes and enhanced the emulsion stability at pH 6.6. At pH 11.0, protein only-stabilised emulsion was stable for 21 days, while alginate addition resulted in phase separation in the binary whey/pea protein-stabilised emulsions. The presence of alginate promoted protein adsorption at all pH with both proteins present at the interface. Whey protein displaced pea protein in the binary whey/pea protein-stabilised emulsions over time, whereas alginate addition prevented pea protein from being replaced by whey protein during storage, enhancing their stability. Binary whey/pea proteins with sodium alginate are promising emulsifiers with potential application for liquid creamers

    The role of the intermediate stage of drying on particle in-situ crystallization in spray dryers

    Full text link
    In-situ crystallization of particles in spray drying has several advantages particularly for product quality modification in the pharmaceutical industry. This process was investigated in a counter current spray dryer using lactose as a model material by manipulation of the local humidity within the drying chamber. Sample collection and humidity injection at different location of the dryer were carried out to better understand the mechanism of particle formation and solidification which are essential components of in-situ crystallization. They revealed that particle formation can be delayed by local humidity elevation. Differential scanning calorimetry and XRD of the yields showed that humidity manipulation was capable to produce semi crystalline lactose of up to 90% crystallinity. The results confirmed that there is a critical period for crystallization such that extending this period would significantly increase the degree of crystallization. Comparison on different requirements of crystallization indicated that extending the time for nucleation and the growth at the critical period via humidity manipulation has the most significant effect on the in-situ crystallization process

    Assessing the effect of Maillard reaction products on the functionality and antioxidant properties of Amaranth-red seaweed blends

    Full text link
    Plant-based proteins, represented by amaranth in our study, embrace a potential as an ingredient for the functional-food formulation. However, their efficacy is hindered by inherent limitations in solubility, emulsification, and antioxidant traits. The Maillard reaction, a complex chemical-process resulting in a diverse array of products, including Maillard conjugates and Maillard reaction products (MRPs), can employ variable effects on these specific attributes. To elucidate the influence of this reaction and the MRPs on the aforementioned properties, we used a complex blend of dehydrated seaweed Gracilaria and amaranth protein to create a conjugate-MRP blend. Our investigations revealed that the resultant incorporation enhanced solubility, emulsification, and antioxidant properties, while the intermediates formed did not progress to advanced glycation stages. This change is likely attributed to the dual effect of conjugates that altered the secondary protein structure, while the generation and/or preservation of MRPs post ultrasonication and spray drying enhanced its antioxidant potential

    Stable nanoemulsions for poorly soluble curcumin: From production to digestion response in vitro

    Full text link
    Curcumin, a polyphenol, can induce anticancer activity depending on dose. However, oral curcumin administration is limited by its low bioavailability due to aqueous insolubility and instability against physiological conditions. This study aims at formulating nanoemulsions by phase inversion temperature to enhance curcumin loading, stability, antioxidant performance, bioaccessibility, and in vitro absorption. The selection mechanisms for oil phase (coconut oil), surfactant (polyoxyl 40 hydrogenated castor oil), co-surfactant (soy phospholipid), and aqueous phase (2 % wt citrate buffer at pH 4.5) are established. The nanoemulsions show tunable mean droplet size (26–129 nm), high curcumin loading (9.53 ± 0.49 mg/mL), polydispersity 0.05). The curcumin nanoemulsions show ∼ 11 %, 24 %, and 57 % higher retention and ∼ 10 %, 12 %, and 17 % higher antioxidant activity than raw curcumin after 3-hour simulated gastric, intestinal, and physiological incubations, respectively. During in vitro digestion and absorption, the encapsulated curcumin shows higher bioaccessibility and absorption than free curcumin (P < 0.05). The samples are stable during 4-week storage at 4˚C and room temperature without preservatives. These findings suggest the potential to develop a nanoencapsulation strategy, particularly for an oral delivery system of oil-soluble drugs

    Time scale based analysis of in-situ crystal formation in droplet undergoing rapid dehydration

    Full text link
    The surface structure of crystalline particles affects the functionality of the particles in drug delivery. Prediction of the final structure of particles that crystallize easily within the spray drying process is of interests for many applications. A theoretical framework was developed for the prediction of crystal structure precipitating on the surface of the particle. This model was based on the dimensionless Damkohler number (Da), to be an indicator of final particle morphology. Timescales of evaporation and reaction were required for calculation of the Damkohler number. The modified evaporation time scale was estimated based on the time that is available for the crystal to precipitate after supersaturation. The reaction time scale was estimated based on the time scale for induction time. Mannitol was produced under different processing conditions in order to validate the theoretical model. Results showed for the high Damkohler numbers, the surface structure of the particle was rough, while smaller Damkohler numbers led to relatively smooth particle surfaces. Additionally, although the beta polymorph was dominant in all of the experiments, alpha polymorph was precipitated in the experiments with a large Damkohler number. The theoretical framework developed will be a useful predictive tool to guide the manipulation of particle crystallization in spray dryers

    A practical CFD modeling approach to estimate outlet boundary conditions of industrial multistage spray dryers: Inert particle flow field investigation

    Full text link
    Industrial multistage spray drying systems often have limited in situ process measurements to provide sufficient information for computational fluid dynamics (CFD) simulations of the primary drying chamber. In this case study on the spray dryer at Davis Dairy Plant (South Dakota State University), uncertainties were encountered in specifying the outlet boundary conditions of the spray drying chamber with two outlets: the side outlet and the bottom outlet leading to the second stage external vibrating bed. Using the available data on the vacuum pressure of the chamber, a numerical framework was introduced to approximate suitable outlet boundary conditions for the drying chamber. The procedure involved analyzing the ratio of the airflow rate between the two outlets and using a pseudo-tracer inert particle injection analysis. The goal of this approach was to determine a suitable range of outlet vacuum pressure that will lead to realistic particle movement behaviors during the actual plant operation. The protocol developed here will be a useful tool for CFD modeling of large scale multistage spray drying systems. Abbreviations: ARC: Australian Research Council; CFD: Computational Fluid Dynamics; FFT: Fast Fourier Transform; MCC: Micellar Casein Concentrate; PRESTO: Pressure Staggering Option; SDSU: South Dakota State University; SIMPLE: Semi − Impilicit Method for Pressure Linked Equations; WPC: Whey Protein Concentrate

    Improvement of rheological and functional properties of milk protein concentrate by hydrodynamic cavitation

    Full text link
    Spray drying at higher solids concentrations improves drying efficiency, and reduces the overall energy cost of milk powder production. As the performance of the evaporator prior to spray drying is limited by viscosity, several methods can be employed to reduce feed viscosity such as thermal pre-treatment or ultrasound. The method employed in this study was hydrodynamic cavitation (HC) on milk protein concentrate (MPC80). Rheological properties of the protein milk were observed to improve, with a reduction in viscosity by 20% and 56% upon the application of a cavitation rotor speed of 25 Hz and 50 Hz, respectively, due to the breakdown in protein gel structure and hence a decrease in the elastic modulus of the proteins. While HC did not adversely affect solubility, with the powders having on average a solubility of 97.5% at a reconstitution temperature of 50 °C, both bulk and tapped density increased when the emulsion was subjected to HC, owing to a reduction in particle size. This study therefore suggests the potential of using HC for a more efficient drying of high solids milk, while maintaining and/or improving the physicochemical properties of powders

    Enzymatic cross-linking of pea and whey proteins to enhance emulsifying and encapsulation properties

    Full text link
    Improving the functionality of commercial plant proteins is essential for food application. Here an alternative strategy is provided to modify the structure of pea protein by microbial transglutaminase-induced cross-linking with whey protein for enhancing emulsifying and encapsulation properties. The protein structures and the physicochemical stability of β-carotene-loaded emulsions were investigated subject to protein ratio and cross-linking. Formation of disulphide and isopeptide bonds between heteroproteins according to cross-linking changed protein structures by exposing the hydrophobic sites of proteins with stiffer network. The cross-linked pea/whey protein complexes at protein ratio of 2:1 formed a stable emulsion with a droplet size of 0.10 µm, showing no phase separation for 30 days of storage and high encapsulation efficiency of 92%. These findings provided a novel strategy to design plant/dairy protein networks to protect lipophilic bioactive compounds by replacing half or more dairy protein with plant protein, leading to gradual change towards plant-based diets

    Numerical simulation of mono-disperse droplet spray dryer under the influence of nozzle motion

    Full text link
    With the increasing demand of uniform particles in the fields of medicine etc., the research on monodisperse droplet spray dryer (MDSD) becomes important. The drying efficiency of the current MDSD facility has to be improved to realize industrial applications. In this work, the influence of several kinds of nozzle movement on the drying process has been thoroughly explored by silico experiments. It is found that the velocity of the nozzle movement plays a key role in drying efficiency improvement. The movement of the nozzle leads to a wider distribution of the final moisture content of particles, and this effect becomes less significant with the increase of the velocity of nozzle motion. For all motion types under investigation, the circular motion is superior to the other motion types. It is revealed that the change of droplet dispersion state due to nozzle motion is the main factor that improves drying performance

    On the effect of turbulence models on CFD simulations of a counter-current spray drying process

    Full text link
    Accurate modeling of the flow field by means of capturing turbulence is crucial in CFD simulations. However, choosing the appropriate turbulence model remains quite challenging for simulating spray drying applications. Only a few studies have touched on this issue, although experimentally validated comparisons throughout the dryer are rare. This work aims to provide an assessment of five different turbulence models (RNG k − ε standard, BSL and SST k − ω as well as transition SST) in terms of the predicted flow field throughout a lab-scale counter-current spray dryer. None of the tested models could initially provide a satisfactory match with locally measured temperatures within the chamber. The popular choice RNG k − ε model led to highest discrepancies, while the k − ω variants performed only slightly better. All these models under-predicted the dissipation of the central hot air jet. Modification to the k − ω variant's characteristic constant to allow increased production of turbulence led to satisfactory agreement between the measurements and simulation results. Extended analysis revealed that different turbulence models produced significantly different drying histories. Only the k − ω SST variant with modified constant could provide predictions close to measured outlet particle moisture content and air conditions. The RNG model proved unsuitable due to unrealistic results with particle injection as well. The differences in predictions with injection among the models were attributed to different transient self-sustained air fluctuation behavior predicted within the chamber. This work will be useful in the selection of turbulence models which is fundamental to accurate CFD modeling of spray dryers
    • …
    corecore