111 research outputs found
Magnetic Properties of a Bose-Einstein Condensate
Three hyperfine states of Bose-condensed sodium atoms, recently optically
trapped, can be described as a spin-1 Bose gas. We study the behaviour of this
system in a magnetic field, and construct the phase diagram, where the
temperature of the Bose condensation increases with magnetic field.
In particular the system is ferromagnetic below and the magnetization
is proportional to the condensate fraction in a vanishing magnetic field.
Second derivatives of the magnetisation with regard to temperature or magnetic
field are discontinuous along the phase boundary.Comment: 5 pages, 5 figures included, to appear in Phys. Rev.
Molecular formations in ultracold mixtures of interacting and noninteracting atomic gases
Atom-molecule equilibrium for molecular formation processes is discussed for
boson-fermion, fermion-fermion, and boson-boson mixtures of ultracold atomic
gases in the framework of quasichemical equilibrium theory. After presentation
of the general formulation, zero-temperature phase diagrams of the
atom-molecule equilibrium states are calculated analytically; molecular, mixed,
and dissociated phases are shown to appear for the change of the binding energy
of the molecules. The temperature dependences of the atom or molecule densities
are calculated numerically, and finite-temperature phase structures are
obtained of the atom-molecule equilibrium in the mixtures. The transition
temperatures of the atom or molecule Bose-Einstein condensations are also
evaluated from these results. Quantum-statistical deviations of the law of mass
action in atom-molecule equilibrium, which should be satisfied in mixtures of
classical Maxwell-Boltzmann gases, are calculated, and the difference in the
different types of quantum-statistical effects is clarified. Mean-field
calculations with interparticle interactions (atom-atom, atom-molecule, and
molecule-molecule) are formulated, where interaction effects are found to give
the linear density-dependent term in the effective molecular binding energies.
This method is applied to calculations of zero-temperature phase diagrams,
where new phases with coexisting local-equilibrium states are shown to appear
in the case of strongly repulsive interactions.Comment: 35 pages, 14 figure
Beneficial and limiting factors in return to work after primary total knee replacement:Patients' perspective
Return to work (RTW) is an important outcome in Total Knee Arthroplasty (TKA). At present, 70-80%of TKA patients return to work within three to six months. What are patients' perspectives regarding beneficial and limiting factors in RTW after TKA? METHODS: Focus groups were formed in accordance with the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Three major topics were explored: 1. What was beneficial for RTW after TKA; 2. What was limiting for RTW after TKA; and 3. What additional care would benefit RTW after TKA? RESULTS: Data saturation was reached after four focus groups, comprising 17 participants - nine men and eight women (median age 58, range 52-65). The focus group study identified four main themes that contributed to a successful RTW namely rehabilitation (medical) like post-operative physical therapy, patient characteristics (personal), like motivation to RTW, occupational characteristics (work-related) like build-up in work tasks and medical support (medical) like availability of a walker or crutches. CONCLUSION: According to participants, factors within the following four themes can contribute to a successful return to work: occupational, patient, rehabilitation and medical care. Incorporating these factors into the integrated care pathway for the 'young' TKA patients may increase the chances of a successful RTW
The Bean-Livingston barrier at a superconductor/magnet interface
The Bean-Livingston barrier at the interface of type-II
superconductor/soft-magnet heterostructures is studied on the basis of the
classical London approach. This shows a characteristic dependence on the
geometry of the particular structure and its interface as well as on the
relative permeability of the involved magnetic constituent. The modification of
the barrier by the presence of the magnet can be significant, as demonstrated
for a cylindrical superconducting filament covered with a coaxial magnetic
sheath. Using typical values of the relative permeability, the critical field
of first penetration of magnetic flux is predicted to be strongly enhanced,
whereas the variation of the average critical current density with the external
field is strongly depressed, in accord with the observations of recent
experiments.Comment: RevTeX 4; revised version; accepted in Journal of Physics: Condensed
Matte
Bose-Einstein condensation of atomic gases in a harmonic oscillator confining potential trap
We present a model which predicts the temperature of Bose-Einstein
condensation in atomic alkali gases and find excellent agreement with recent
experimental observations. A system of bosons confined by a harmonic oscillator
potential is not characterized by a critical temperature in the same way as an
identical system which is not confined. We discuss the problem of Bose-Einstein
condensation in an isotropic harmonic oscillator potential analytically and
numerically for a range of parameters of relevance to the study of low
temperature gases of alkali metals.Comment: 11 pages latex with two postscript figure
Magnetic Field Effects in the Pseudogap Phase: A Competing Energy Gap Scenario for Precursor Superconductivity
We study the sensitivity of T_c and T^* to low fields, H, within the
pseudogap state using a BCS-based approach extended to arbitrary coupling. We
find that T^* and T_c, which are of the same superconducting origin, have very
different H dependences. This is due to the pseudogap, \Delta_{pg}, which is
present at the latter, but not former temperature. Our results for the
coherence length \xi fit well with existing experiments.We predict that very
near the insulator \xi will rapidly increase.Comment: 4 pages, 4 figures, RevTe
Ground-State of Charged Bosons Confined in a Harmonic Trap
We study a system composed of N identical charged bosons confined in a
harmonic trap. Upper and lower energy bounds are given. It is shown in the
large N limit that the ground-state energy is determined within an accuracy of
and that the mean field theory provides a reasonable result with
relative error of less than 16% for the binding energy .Comment: 15 page
Effect of screening of the electron-phonon interaction on the temperature of Bose-Einstein condensation of intersite bipolarons
Here we consider an interacting electron-phonon system within the framework
of extended Holstein-Hubbard model at strong enough electron-phonon interaction
limit in which (bi)polarons are the essential quasiparticles of the system. It
is assumed that the electron-phonon interaction is screened and its potential
has Yukawa-type analytical form. An effect of screening of the electron-phonon
interaction on the temperature of Bose-Einstein condensation of the intersite
bipolarons is studied for the first time. It is revealed that the temperature
of Bose-Einstein condensation of intersite bipolarons is higher in the system
with the more screened electron-phonon interaction.Comment: 6 pages, 4 figure
- …