12 research outputs found

    Blastocystis sp. subtype 3 triggers higher proliferation of human colorectal cancer cells, HCT116

    No full text
    Blastocystis sp. is a commonly found intestinal microorganism and was reported to cause many nonspecific gastrointestinal symptoms. Various subtypes have been previously reported, and the pathogenicity of different subtypes of Blastocystis is unclear and remains as a controversial issue. A recent study has shown that the Blastocystis antigen isolated from an unknown subtype could facilitate the proliferation of colon cancer cells. Current study was conducted to compare the effect of solubilized antigen isolated from five different subtypes of Blastocystis on colon cancer cells, HCT116. A statistically significant proliferation of these cells was observed when exposed to 1.0 μg/ml solubilized antigen isolated from subtype 3 Blastocystis (37.22 , p <0.05). Real-time polymerase chain reaction demonstrated the upregulation of Th2 cytokines especially transforming growth factor beta in subtype 3-treated cancer cells (p <0.01, 3.71-fold difference). Of interest, subtype 3 Blastocystis antigen also caused a significantly higher upregulation of cathepsin B (subtypes 1 and 2, p <0.01; subtypes 4 and 5, p <0.001; 6.71-fold difference) which lead to the postulation that it may enhance the exacerbation of existing colon cancer cells by weakening the cellular immune response. The dysregulation of IFN-γ and p53 expression also suggest Blastocystis as a proponent of carcinogenesis. Therefore, it is very likely for subtype 3 Blastocystis to have higher pathogenic potential as it caused an increased propagation of cancer cells and substantial amount of inflammatory reaction compared to other subtypes

    Exacerbation of colon carcinogenesis by Blastocystis sp.

    No full text
    Colorectal cancer (CRC) is one the most commonly diagnosed cancers worldwide and the number is increasing every year. Despite advances in screening programs, CRC remains as the second leading cause of cancer deaths in the United States. Oxidative stress plays an important role in the molecular mechanisms of colorectal cancer (CRC) and has been shown to be associated with Blastocystis sp., a common intestinal microorganism. In the present study, we aimed to identify a role for Blastocystis sp. in exacerbating carcinogenesis using in vivo rat model. Methylene blue staining was used to identify colonic aberrant crypt foci (ACF) and adenomas formation in infected rats whilst elevation of oxidative stress bio-marker levels in the urine and serum samples were evaluated using biochemical assays. Histological changes of the intestinal mucosa were observed and a significant number of ACF was found in Blastocystis sp. infected AOM-rats compared to the AOM-controls. High levels of urinary oxidative indices including advanced oxidative protein products (AOPP) and hydrogen peroxide were observed in Blastocystis sp. infected AOM-rats compared to the uninfected AOM-rats. Our study provides evidence that Blastocystis sp. has a significant role in enhancing AOM-induced carcinogenesis by resulting damage to the intestinal epithelium and promoting oxidative damage in Blastocystis sp. infected rats

    Hydro thermal scheduling using particle swarm optimization

    No full text
    This paper presents a new approach of particle swarm optimization (PSO) algorithm for short term Hydro Thermal Scheduling (HTS) problems. Various possible particle selections have been studied and its effects on the global optima have been discussed. The effectiveness and stochastic nature of proposed algorithm has been tested with standard test case and the results have been compared with earlier works. This paper also describes software developed for short term hydro-thermal scheduling by considering hydro economic dispatch and thermal unit commitment. The proposed algorithm is ideally suitable for hydro-thermal co-ordination problems, hydro economic dispatch problems with unit commitment, thermal economic dispatch with unit commitment problems and scheduling of hydraulically coupled plants

    Three Members of Transmembrane-4-Superfamily, TM4SF1, TM4SF4, and TM4SF5, as Emerging Anticancer Molecular Targets against Cancer Phenotypes and Chemoresistance

    Get PDF
    There are six members of the transmembrane 4 superfamily (TM4SF) that have similar topology and sequence homology. Physiologically, they regulate tissue differentiation, signal transduction pathways, cellular activation, proliferation, motility, adhesion, and angiogenesis. Accumulating evidence has demonstrated, among six TM4SF members, the regulatory roles of transmembrane 4 L6 domain family members, particularly TM4SF1, TM4SF4, and TM4SF5, in cancer angiogenesis, progression, and chemoresistance. Hence, targeting derailed TM4SF for cancer therapy has become an emerging research area. As compared to others, this review aimed to present a focused insight and update on the biological roles of TM4SF1, TM4SF4, and TM4SF5 in the progression, metastasis, and chemoresistance of various cancers. Additionally, the mechanistic pathways, diagnostic and prognostic values, and the potential and efficacy of current anti-TM4SF antibody treatment were also deciphered. It also recommended the exploration of other interactive molecules to be implicated in cancer progression and chemoresistance, as well as potential therapeutic agents targeting TM4SF as future perspectives. Generally, these three TM4SF members interact with different integrins and receptors to significantly induce intracellular signaling and regulate the proliferation, migration, and invasion of cancer cells. Intriguingly, gene silencing or anti-TM4SF antibody could reverse their regulatory roles deciphered in different preclinical models. They also have prognostic and diagnostic value as their high expression was detected in clinical tissues and cells of various cancers. Hence, TM4SF1, TM4SF4, and TM4SF5 are promising therapeutic targets for different cancer types preclinically and deserve further investigation
    corecore