56 research outputs found

    Synthesis, Structures, and Optical Properties of Ruthenium(II) Complexes of the Tris(1-pyrazolyl)methane Ligand

    Get PDF
    Four new complex salts [Ru^(II)Cl(Tpm)(L^A)_2][PF_6]_n [Tpm = tris(1-pyrazolyl)methane; n = 1, L^A = pyridine (py) 1 or ethyl isonicotinate (EIN) 2; n = 3, L^A = N-methyl-4,4′-bipyridinium (MeQ^+) 3 or N-phenyl-4,4′-bipyridinium (PhQ^+) 4] have been prepared and characterized. Electronic absorption spectra show intense d → π^* metal-to-ligand charge-transfer (MLCT) absorption bands, while cyclic voltammetry reveals a reversible Ru^(III/II) wave, accompanied by quasireversible or irreversible L^A-based reductions for all except 1. Single crystal X-ray structures have been obtained for 1•Me_2CO, 2, and 3•Me_2CO. For 2–4, molecular first hyperpolarizabilities β have been measured in acetonitrile solutions via the hyper-Rayleigh scattering (HRS) technique at 800 nm. Stark (electroabsorption) spectroscopic studies on the MLCT bands in frozen butyronitrile allow the indirect estimation of static first hyperpolarizabilities β_0. The various physical data obtained for 3 and 4 are compared with those reported previously for related cis-{Ru^(II)(NH_3)_4}^(2+) species [Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845]. TD-DFT calculations on the complexes in 1–4 confirm that their lowest energy absorption bands are primarily Ru^(II) → L^A MLCT in character, while Ru^(II) → Tpm MLCT transitions are predicted at higher energies. DFT agrees with the Stark, but not the HRS measurements, in showing that β_0 increases with the electron-accepting strength of L^A. The 2D nature of the chromophores is evidenced by dominant β_(xxy) tensor components

    Synthesis of Mixed Tin–Ruthenium and Tin–Germanium–Ruthenium Carbonyl Clusters from [Ru 3

    Full text link

    Rhodium(I) complexes of the conformationally rigid IBioxMe4Ligand : isolation of a stable low-coordinate T-shaped complex

    Get PDF
    The isolation, characterization and reactivity of a T-shaped rhodium(I) complex containing Glorius’ bioxazoline derived N-heterocyclic carbene ligand IBioxMe4 is described: [Rh(IBioxMe4)3][BArF4] (1). 1 represents a rare example of a solution-stable “naked” 14-electron complex and is characterized in the solid state by highly distorted ligand geometries and Rh···C distances >3.1 Å for the IBioxMe4 alkyl substituents. Consistent with the bulky nature of the NHC ligand, no reaction was observed with excess IBioxMe4, PCy3, or norbornadiene. Reaction of 1 with CO, however, led to coordinatively saturated [Rh(IBioxMe4)3(CO)][BArF4] (2)
    corecore