9,210 research outputs found

    On the stability and growth of single myelin figures

    Full text link
    Myelin figures are long thin cylindrical structures that typically grow as a dense tangle when water is added to the concentrated lamellar phase of certain surfactants. We show that, starting from a well-ordered initial state, single myelin figures can be produced in isolation thus allowing a detailed study of their growth and stability. These structures grow with their base at the exposed edges of bilayer stacks from which material is transported into the myelin. Myelins only form and grow in the presence of a driving stress; when the stress is removed, the myelins retract.Comment: 4 pages, 8 figures. Revised version, 1 new figure, additional reference

    Bose-Einstein Condensation in the presence of an artificial spin-orbit interaction

    Full text link
    Bose-Einstein condensation in the presence of a synthetic spin-momentum interaction is considered, focusing on the case where a Dirac or Rashba potential is generated via a tripod scheme. We found that the ground states can be either plane wave states or superpositions of them, each characterized by their unique density distributions.Comment: 5 pages, no figure

    Tree-level electron-photon interactions in graphene

    Full text link
    Graphene's low-energy electronic excitations obey a 2+1 dimensional Dirac Hamiltonian. After extending this Hamiltonian to include interactions with a quantized electromagnetic field, we calculate the amplitude associated with the simplest, tree-level Feynman diagram: the vertex connecting a photon with two electrons. This amplitude leads to analytic expressions for the 3D angular dependence of photon emission, the photon-mediated electron-hole recombination rate, and corrections to graphene's opacity πα\pi \alpha and dynamic conductivity πe2/2h\pi e^2/2 h for situations away from thermal equilibrium, as would occur in a graphene laser. We find that Ohmic dissipation in perfect graphene can be attributed to spontaneous emission.Comment: 5 pages, 3 figure

    Self-Similar Magnetocentrifugal Disk Winds with Cylindrical Asymptotics

    Get PDF
    We construct a two-parameter family of models for self-collimated, radially self-similar magnetized outflows from accretion disks. A flow at zero initial poloidal speed leaves the surface of a rotating disk and is accelerated and redirected toward the pole by helical magnetic fields threading the disk. At large distances from the disk, the flow streamlines asymptote to wrap around the surfaces of nested cylinders. In constrast to previous disk wind modeling, we have explicitly implemented the cylindrical asymptotic boundary condition to examine the consequences for flow dynamics. The solutions are characterized by the logarithmic gradient of the magnetic field strength and the ratios between the footpoint radius R_0 and asymptotic radius R_1 of streamlines; the Alfven radius must be found as an eigenvalue. Cylindrical solutions require the magnetic field to drop less steeply than 1/R. We find that the asymptotic poloidal speed on any streamline is typically just a few tenths of the Kepler speed at the corresponding disk footpoint. The asymptotic toroidal Alfven speed is, however, a few times the footpoint Kepler speed. We discuss the implications of the models for interpretations of observed optical jets and molecular outflows from young stellar systems. We suggest that the difficulty of achieving strong collimation in vector velocity simultaneously with a final speed comparable to the disk rotation rate argues against isolated jets and in favor of models with broader winds.Comment: 39 pages, Latex (uses AAS Latex macros), 6 eps figures, postscript preprint with embedded figures available from http://www.astro.umd.edu/~ostriker/professional/publications.html , to appear in ApJ 9/1/9

    Lepton flavor violating decays of vector mesons

    Full text link
    We estimate the rates of lepton flavor violating decays of the vector mesons ρ,ω,ϕeμ\rho, \omega, \phi \to e \mu. The theoretical tools are based on an effective Lagrangian approach without referring to any specific realization of the physics beyond the standard model responsible for lepton flavor violation (\Lfv). The effective lepton-vector meson couplings are extracted from the existing experimental bounds on the nuclear μe\mu^--e^- conversion. In particular, we derive an upper limit for the \Lfv branching ratio Br(ϕeμ)1.3×1021{\rm Br}(\phi \to e \mu) \leq1.3 \times 10^{-21} which is much more stringent than the recent experimental result Br(ϕeμ)<2×106{\rm Br}(\phi \to e \mu) < 2 \times 10^{-6} presented by the SND Collaboration. Very tiny limits on \Lfv decays of vector mesons derived in this letter make direct experimental observation of these processes unrealistic.Comment: 3 pages, 1 figure, accepted for publication in Phys. Rev.

    Electromagnetic Transition Form Factors of Mesons

    Full text link
    Using a counting scheme which treats pseudoscalar and vector mesons on equal footing, the decays of the narrow light vector mesons omega and phi into a dilepton and a pseudoscalar pi-meson or eta-meson, respectively, are calculated. Thereby, all required parameters could be determined by other reactions so that one has predictive power for the considered decays. The calculated partial decay widths are in very good agreement with the experimental data.Comment: Talk given at the 33rd International School of Nuclear Physics (From Quarks and Gluons to Hadrons and Nuclei) in Erice (Italy

    Instability of Myelin Tubes under Dehydration: deswelling of layered cylindrical structures

    Full text link
    We report experimental observations of an undulational instability of myelin figures. Motivated by this, we examine theoretically the deformation and possible instability of concentric, cylindrical, multi-lamellar membrane structures. Under conditions of osmotic stress (swelling or dehydration), we find a stable, deformed state in which the layer deformation is given by \delta R ~ r^{\sqrt{B_A/(hB)}}, where B_A is the area compression modulus, B is the inter-layer compression modulus, and h is the repeat distance of layers. Also, above a finite threshold of dehydration (or osmotic stress), we find that the system becomes unstable to undulations, first with a characteristic wavelength of order \sqrt{xi d_0}, where xi is the standard smectic penetration depth and d_0 is the thickness of dehydrated region.Comment: 5 pages + 3 figures [revtex 4

    High-harmonic generation from arbitrarily oriented diatomic molecules including nuclear motion and field-free alignment

    Get PDF
    We present a theoretical model of high-harmonic generation from diatomic molecules. The theory includes effects of alignment as well as nuclear motion and is used to predict results for N2_2, O2_2, H2_2 and D2_2. The results show that the alignment dependence of high-harmonics is governed by the symmetry of the highest occupied molecular orbital and that the inclusion of the nuclear motion in the theoretical description generally reduces the intensity of the harmonic radiation. We compare our model with experimental results on N2_2 and O2_2, and obtain very good agreement.Comment: 12 pages, 8 figures, 2 tables; legends revised on Figs. 1,3,4,6 and

    Faithful fermionic representations of the Kondo lattice model

    Full text link
    We study the Kondo lattice model using a class of canonical transformations that allow us to faithfully represent the model entirely in terms of fermions without constraints. The transformations generate interacting theories that we study using mean field theory. Of particular interest is a new manifestly O(3)-symmetric representation in terms of Majorana fermions at half-filling on bipartite lattices. This representation suggests a natural O(3)-symmetric trial state that is investigated and characterized as a gapped spin liquid.Comment: 11 pages, 2 figures, minor update
    corecore