23,118 research outputs found
Radiation-induced magnetoresistance oscillation in a two-dimensional electron gas in Faraday geometry
Microwave-radiation induced giant magnetoresistance oscillations recently
discovered in high-mobility two-dimensional electron systems in a magnetic
field, are analyzed theoretically. Multiphoton-assisted impurity scatterings
are shown to be the primary origin of the oscillation. Based on a model which
considers the interaction of electrons with the electromagnetic fields in
Faraday geometry, we are able not only to reproduce the correct period, phase
and the negative resistivity of the main oscillation, but also to obtain
secondary peaks and additional maxima and minima in the resistivity curve, some
of which were already observed in the experiments.Comment: 4 pages, 1 figure, revised version to be published in Phys. Rev. Let
On positive solutions and the Omega limit set for a class of delay differential equations
This paper studies the positive solutions of a class of delay differential
equations with two delays. These equations originate from the modeling of
hematopoietic cell populations. We give a sufficient condition on the initial
function for such that the solution is positive for all time .
The condition is "optimal". We also discuss the long time behavior of these
positive solutions through a dynamical system on the space of continuous
functions. We give a characteristic description of the limit set of
this dynamical system, which can provide informations about the long time
behavior of positive solutions of the delay differential equation.Comment: 15 pages, 2 figure
Heat transfer and pressure drop in blade cooling channels with turbulence promoters
Repeated rib roughness elements have been used in advanced turbine cooling designs to enhance the internal heat transfer. Often the ribs are perpendicular to the main flow direction so that they have an angle-of-attack of 90 deg. The objective of the project was to investigate the effect of rib angle-of-attack on the pressure drop and the average heat transfer coefficients in a square duct with two opposite rib-roughned walls for Reynolds number varied from 8000 to 80,000. The rib height-to-equivalent diameter ratio (e/D) was kept at a constant value of 0.063, the rib pitch-to-height ratio (P/e) was varied from 10 to 20, and the rib angle-of-attack (alpha) was varied from 90 deg to 60 deg to 45 deg to 30 deg respectively. Two types of entrance conditions were examined, namely, long duct and sudden contraction. The heat transfer coefficient distribution on the smooth side wall and the rough side wall at the entrance and the fully developed regions were measured. Thermal performance comparison indicated that the pumping power requirement for the rib with an oblique angle to the flow (alpha = 45 deg to 30 deg) was about 20 to 50 percent lower than the rib with a 90 deg angle to the flow for a given heat transfer duty
- …