5,649 research outputs found
Cross-Kerr-based information transfer processes
The realization of nonclassical states is an important task for many
applications of quantum information processing. Usually, properly tailored
interactions, different from goal to goal, are considered in order to
accomplish specific tasks within the general framework of quantum state
engineering. In this paper we remark on the flexibility of a cross-Kerr
nonlinear coupling in hybrid systems as an important ingredient in the
engineering of nonclassical states. The general scenario we consider is the
implementation of high cross-Kerr nonlinearity in cavity-quantum
electrodynamics. In this context, we discuss the possibility of performing
entanglement transfer and swapping between a qubit and a continuous-variable
state. The recently introduced concept of entanglement reciprocation is also
considered and shown to be possible with our scheme. We reinterpret some of our
results in terms of applications of a generalized Ising interaction to systems
of different nature.Comment: 8 pages, 4 figures, RevTeX
Melting of Quasi-Two-Dimensional Charge Stripes in La5/3Sr1/3NiO4
Commensurability effects for nickelates have been studied by the first
neutron experiments on La5/3Sr1/3NiO4. Upon cooling, this system undergoes
three successive phase transitions associated with quasi-two-dimensional (2D)
commensurate charge and spin stripe ordering in the NiO planes. The two
lower temperature phases (denoted as phase II and III) are stripe lattice
states with quasi-long-range in-plane charge correlation. When the lattice of
2D charge stripes melts, it goes through an intermediate glass state (phase I)
before becoming a disordered liquid state. This glass state shows short-range
charge order without spin order, and may be called a "stripe glass" which
resembles the hexatic/nematic state in 2D melting.Comment: 10 pages, RevTex, 4 figures available on request to
[email protected]
- …