28 research outputs found
Short- and long-term outcomes of single bare metal stent versus drug eluting stent in nondiabetic patients with a simple de novo lesion in the middle and large vessel
<p>Abstract</p> <p>Objective</p> <p>This study was aimed to investigate the short- and long-term outcomes of percutaneous coronary intervention (PCI) between single bare metal stent (BMS) and single drug eluting stent (DES) in nondiabetic patients with a simple de novo lesion in the middle and large vessel.</p> <p>Methods</p> <p>Two hundred and thirty-five consecutive patients with a simple de novo lesion in the middle and large vessel were treated with BMS or DES in our hospital from Apr. 2004 to Dec. 2004.</p> <p>The inclusion criteria: a simple de novo lesion in the middle and large vessel, stent diameter ≥ 3.0 mm, stent length ≤ 18 mm, the exclusion criteria: diabetes mellitus, left main trunk disease and left ventricular ejection fraction ≤ 30%. Of them, there were 150 patients in BMS group and 85 patients in DES group, and the rates of lost to follow up were 6.7% and 1.2% respectively.</p> <p>Results</p> <p>BMS group had lower hypercholesteremia rate (22.0% vs 38.8%) and higher proportion of TIMI grade 0 (12% vs 1.2%) than DES group (all P < 0.05), but both groups had similar stent length (16.16 ± 2.81 mm vs 16.06 ± 2.46 mm) and stent diameter (3.85 ± 3.07 mm vs 3.19 ± 0.24 mm) after procedure, in-segment restenosis rate (0% vs 1.2%) and target lesion revascularization (TLR, 2.0% vs 2.4%) at 6-month follow-up (all P > 0.05). No difference was found in TLR (1.3% vs 1.2%, P = 1.00) and recurrent myocardial infarction (Re-MI) (0% vs 1.2%, P = 0.36), cardiac death (0.7% vs 1.2%, P = 1.00) between 1- and 3-year. So were TLR (6.0% vs 5.9%, P = 0.97), Re-MI (0% vs 2.4%, P = 0.06), cardiac death (2.0% vs 3.5%, P = 0.48) and major adverse cardiac events (MACE, 8.7% vs 10.6%, P = 0.63), cardiac death-free cumulative survival (98.7% vs 97.7%, P = 0.56), TLR-free cumulative survival (94.0% vs 94.1%, P = 0.98) and Re-MI-free cumulative survival (100% vs 97.7%, P = 0.06) at 3-year follow-up.</p> <p>Conclusion</p> <p>The single BMS has similar efficacy and safety to single DES in nondiabetic patients with a simple de novo lesion in the middle and large vessel at short- and long-term follow-up.</p
Preparation and chiral separation of a novel immobilized cellulose-based chiral stationary phase in high-performance liquid chromatography
The chiral selector 6-azido-2, 3-di(p-chlorophenylcarbamoylated) cellulose was synthesized and further chemically immobilized onto 5-μm amino functionalized spherical porous silica gel. It was used as chiral stationary phase in high-performance liquid chromatography. Thirty racemates were successfully separated into enantiomers in either normal phase mode or reversed-phase mode. Good reproducibility and stability of the chiral stationary phase have been demonstrated.Published Versio
An adaptive limited wide area differential protection for power grid with micro-sources
Abstract The operation mode of power grids with intermittent distributed generations (DGs) changes frequently due to the bidirectional power flow. In comparison with the conventional grids, the protection relays in power grids with micro-sources are more difficult to set. To tackle this problem, this paper proposes an extended bus differential protection (EBDP) strategy based on the limited wide area (LWA). In this method, the micro-grids are divided into several protection areas at the core of the bus. The whole protection areas are protected by the wide area current differential relays, which are also configured to protect each component in this protection area. Moreover, the protection areas can be changed adaptively according to the power flow direction. Finally, a micro-grid model with multiple DGs is developed using the PSCAD/EMTDC platform. The simulation results indicate that the proposed adaptive limited wide area differential protection (LWADP) has better performance than the traditional relaying protection in detecting the faulty area in micro-grids and isolating the fault, and can be widely utilized in larger micro-grids