30 research outputs found

    Quantum Optics and Electronics

    Get PDF
    Contains reports on three research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-79-C-0071)Joint Services Electronics Program (Contract DAAG29-78-C-0020)Joint Services Electronics Program (Contract DAAG29-80-C-0104)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0694

    Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber.

    Get PDF
    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm(2) saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications.The authors thank E. J. R. Kelleher for valuable discussions. MZ acknowledges support from Beihang University, China, through a Zhuoyue Bairen Program and TH from the Royal Academy of Engineering through a fellowship (Graphlex). This work at Beihang University was supported by 973 Program (2012CB315601), NSFC (61221061/61435002) and the Fundamental Research Funds for the Central Universities.This is the final version of the article. It was first available from NPG via http://dx.doi.org/10.1038/srep1748

    A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    No full text
    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd[superscript 3+]-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm[superscript −2], or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.United States. Dept. of DefenseUnited States. Air Force Office of Scientific ResearchUnited States. Dept. of Energy. Office of Basic Energy Sciences (DE-SC0001088)MIT Masdar Program (02/MI/MI/CP/11/07633/GEN/G/00)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship (32 CFR 168a, FA9550-11-C-0028)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (W911NF-13-D-0001
    corecore