117 research outputs found
Thermoelectric prospects of nanomaterials with spin-orbit surface bands
Nanostructured composites and nanowire arrays of traditional thermoelectrics
like Bi, Bi(1-x)Sb(x) and Bi(2)Te(3) have metallic Rashba surface spin-orbit
bands featuring high mobilities rivaling that of the bulk for which topological
insulator behavior has been proposed. Nearly pure surface electronic transport
has been observed at low temperatures in Bi nanowires with diameter around the
critical diameter, 50 nm, for the semimetal-to semiconductor transition. The
surface contributes strongly to the thermopower, actually dominating for
temperatures T < 100 K in these nanowires. The surface thermopower was found to
be -1 T microvolt/(K^2), a value that is consistent with theory. We show that
surface electronic transport together with boundary phonon scattering leads to
enhanced thermoelectric performance at low temperatures of Bi nanowire arrays.
We compare with bulk n-BiSb alloys, optimized CsBi(4)Te(6) and optimized
Bi(2)Te(3). Surface dominated electronic transport can be expected in
nanomaterials of the other traditional thermoelectrics.Comment: 18 pages, 3 figure
: a cis antisense RNA operates in trans in S. aureus
International audienceAntisense RNAs (asRNAs) pair to RNAs expressed from the complementary strand, and their functions are thought to depend on nucleotide overlap with genes on the opposite strand. There is little information on the roles and mechanisms of asRNAs. We show that a cis asRNA acts in trans, using a domain outside its target complementary sequence. SprA1 small regulatory RNA (sRNA) and SprA1(AS) asRNA are concomitantly expressed in S. aureus. SprA1(AS) forms a complex with SprA1, preventing translation of the SprA1-encoded open reading frame by occluding translation initiation signals through pairing interactions. The SprA1 peptide sequence is within two RNA pseudoknots. SprA1(AS) represses production of the SprA1-encoded cytolytic peptide in trans, as its overlapping region is dispensable for regulation. These findings demonstrate that sometimes asRNA functional domains are not their gene-target complementary sequences, suggesting there is a need for mechanistic re-evaluation of asRNAs expressed in prokaryotes and eukaryotes
The first small-molecule inhibitors of members of the ribonuclease E family
The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the first examples of an endonuclease that can recognise the 5′-monophosphorylated ends of RNA thereby increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families including important pathogens, but no homologues have been identified in humans or animals. RNase E represents a potential target for the development of new antibiotics to combat the growing number of bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the active site of essential enzymes are proving to be a source of potential drug leads and tools to dissect function through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E
Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression
RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III
A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number
We propose a biophysical model of Escherichia coli that predicts growth rate
and an effective cellular composition from an effective, coarse-grained
representation of its genome. We assume that E. coli is in a state of balanced
exponential steadystate growth, growing in a temporally and spatially constant
environment, rich in resources. We apply this model to a series of past
measurements, where the growth rate and rRNA-to-protein ratio have been
measured for seven E. coli strains with an rRNA operon copy number ranging from
one to seven (the wild-type copy number). These experiments show that growth
rate markedly decreases for strains with fewer than six copies. Using the
model, we were able to reproduce these measurements. We show that the model
that best fits these data suggests that the volume fraction of macromolecules
inside E. coli is not fixed when the rRNA operon copy number is varied.
Moreover, the model predicts that increasing the copy number beyond seven
results in a cytoplasm densely packed with ribosomes and proteins. Assuming
that under such overcrowded conditions prolonged diffusion times tend to weaken
binding affinities, the model predicts that growth rate will not increase
substantially beyond the wild-type growth rate, as indicated by other
experiments. Our model therefore suggests that changing the rRNA operon copy
number of wild-type E. coli cells growing in a constant rich environment does
not substantially increase their growth rate. Other observations regarding
strains with an altered rRNA operon copy number, such as nucleoid compaction
and the rRNA operon feedback response, appear to be qualitatively consistent
with this model. In addition, we discuss possible design principles suggested
by the model and propose further experiments to test its validity
- …