317 research outputs found

    A consistent molecular hydrogen isotope chemistry scheme based on an independent bond approximation

    Get PDF
    The isotopic composition of molecular hydrogen (H<sub>2</sub>) produced by photochemical oxidation of methane (CH<sub>4</sub>) and Volatile Organic Compounds (VOCs) is a key quantity in the global isotope budget of (H<sub>2</sub>). The many individual reaction steps involved complicate its investigation. Here we present a simplified structure-activity approach to assign isotope effects to the individual elementary reaction steps in the oxidation sequence of CH<sub>4</sub> and some other VOCs. The approach builds on and extends the work by Gerst and Quay (2001) and Feilberg et al. (2007b). The description is generalized and allows the application, in principle, also to other compounds. The idea is that the C-H and C-D bonds – seen as reactive sites – have similar relative reaction probabilities in isotopically substituted, but otherwise identical molecules. The limitations of this approach are discussed for the reaction CH<sub>4</sub>+Cl. The same approach is applied to VOCs, which are important precursors of H<sub>2</sub> that need to be included into models. Unfortunately, quantitative information on VOC isotope effects and source isotope signatures is very limited and the isotope scheme at this time is limited to a strongly parameterized statistical approach, which neglects kinetic isotope effects. Using these concepts we implement a full hydrogen isotope scheme in a chemical box model and carry out a sensitivity study to identify those reaction steps and conditions that are most critical for the isotope composition of the final H<sub>2</sub> product. The reaction scheme is directly applicable in global chemistry models, which can thus include the isotope pathway of H<sub>2</sub> produced from CH<sub>4</sub> and VOCs in a consistent way

    Continuous-flow IRMS technique for determining the 17O excess of CO2 using complete oxygen isotope exchange with cerium oxide

    Get PDF
    This paper presents an analytical system for analysis of all single substituted isotopologues (<sup>12</sup>C<sup>16</sup>O<sup>17</sup>O, <sup>12</sup>C<sup>16</sup>O<sup>18</sup>O, <sup>13</sup>C<sup>16</sup>O<sup>16</sup>O) in nanomolar quantities of CO<sub>2</sub> extracted from stratospheric air samples. CO<sub>2</sub> is separated from bulk air by gas chromatography and CO<sub>2</sub> isotope ratio measurements (ion masses 45 / 44 and 46 / 44) are performed using isotope ratio mass spectrometry (IRMS). The <sup>17</sup>O excess (Δ<sup>17</sup>O) is derived from isotope measurements on two different CO<sub>2</sub> aliquots: unmodified CO<sub>2</sub> and CO<sub>2</sub> after complete oxygen isotope exchange with cerium oxide (CeO<sub>2</sub>) at 700 °C. Thus, a single measurement of Δ<sup>17</sup>O requires two injections of 1 mL of air with a CO<sub>2</sub> mole fraction of 390 μmol mol<sup>−1</sup> at 293 K and 1 bar pressure (corresponding to 16 nmol CO<sub>2</sub> each). The required sample size (including flushing) is 2.7 mL of air. A single analysis (one pair of injections) takes 15 minutes. The analytical system is fully automated for unattended measurements over several days. The standard deviation of the <sup>17</sup>O excess analysis is 1.7&permil;. Multiple measurements on an air sample reduce the measurement uncertainty, as expected for the statistical standard error. Thus, the uncertainty for a group of 10 measurements is 0.58&permil; for &Delta; <sup>17</sup>O in 2.5 h of analysis. 100 repeat analyses of one air sample decrease the standard error to 0.20&permil;. The instrument performance was demonstrated by measuring CO<sub>2</sub> on stratospheric air samples obtained during the EU project RECONCILE with the high-altitude aircraft Geophysica. The precision for RECONCILE data is 0.03&permil; (1&sigma;) for δ<sup>13</sup>C, 0.07&permil; (1&sigma;) for δ<sup>18</sup>O and 0.55&permil; (1&sigma;) for &delta;<sup>17</sup>O for a sample of 10 measurements. This is sufficient to examine stratospheric enrichments, which at altitude 33 km go up to 12&permil; for &delta;<sup>17</sup>O and up to 8&permil; for δ<sup>18</sup>O with respect to tropospheric CO<sub>2</sub> : &delta;<sup>17</sup>O ~ 21&permil; Vienna Standard Mean Ocean Water (VSMOW), δ<sup>18</sup>O ~ 41&permil; VSMOW (Lämmerzahl et al., 2002). The samples measured with our analytical technique agree with available data for stratospheric CO<sub>2</sub>

    Recolonisation of spawning grounds in a recovering fish stock: recent changes in North Sea herring

    Get PDF
    There is evidence that the importance of the different spawning grounds of North Sea autumn-spawning herring has changed. It has been hypothesised that as herring stocks collapse, the diversity of spawning sites also collapses. This was found to be the case in the Sea autumn-spawning herring, which collapsed in the late 1970s. The ICES International Herring Larval Survey has been carried out since 1972 and covers most of the potential and historic spawning grounds of herring. recovery of the stock did take place as predicted in terms of biomass, and re-colonisation of old spawning sites also did occur. We show that, despite the delayed response in re-colonisation of the southern spawning areas, there is almost no change in the number of spawning locations where the highest abundances of larvae (top 50%) are found from collapse to recovery (approximately 9 sites). It was a change in these core sites and the spread to other locations with lower larval abundance that caused the spread of herring spawning. We show that larval surveys are a useful tool for describing the dynamics of sub-stock structure in heterogeneous populations such as herring

    Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    Get PDF
    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania. The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (−629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (−249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered. The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors

    Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Get PDF
    In this study, we identify a biomass-burning signal in molecular hydrogen (H<sub>2</sub>) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H<sub>2</sub> and several other species as well as the H<sub>2</sub> isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H<sub>2</sub> emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb<sup>−1</sup> and an isotopic source signature of −280 ± 41&permil; in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H<sub>2</sub>, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The &Delta;H<sub>2</sub> / &Delta;CO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H<sub>2</sub> isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H<sub>2</sub> from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H<sub>2</sub>. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations

    Eddy covariance methane measurements at a Ponderosa pine plantation in California

    Get PDF
    Long term methane flux measurements have been mostly performed with plant or soil enclosure techniques on specific components of an ecosystem. New fast response methane analyzers make it possible to use the eddy covariance (EC) technique instead. The EC technique is advantageous because it allows continuous flux measurements integrating over a larger and more representative area including the complete ecosystem, and allows fluxes to be observed as environmental conditions change naturally without disturbance. We deployed the closed-path Fast Methane analyzer (FMA) from Los Gatos Research Ltd and demonstrate its performance for EC measurements at a Ponderosa pine plantation at the Blodgett Forest site in central California. The fluctuations of the CH&lt;sub&gt;4&lt;/sub&gt; concentration measured at 10 Hz appear to be small and their standard deviation is comparable to the magnitude of the signal noise (&amp;plusmn;5 ppbv). Consequently, the power spectra typically have a white noise signature at the high frequency end (a slope of +1). Nevertheless, in the frequency range important for turbulent exchange, the cospectra of CH&lt;sub&gt;4&lt;/sub&gt; compare very well with all other scalar cospectra confirming the quality of the FMA measurements are good for the EC technique. We furthermore evaluate the complications of combined open and closed-path measurements when applying the Webb-Pearman-Leuning (WPL) corrections (Webb et al., 1980) and the consequences of a phase lag between the water vapor and methane signal inside the closed path system. The results of diurnal variations of CH&lt;sub&gt;4&lt;/sub&gt; concentrations and fluxes are summarized and compared to the monthly results of process-based model calculations

    Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

    Get PDF
    The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system

    Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere

    Get PDF
    We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in air samples originating from remote regions of the atmosphere and present evidence for its accelerating growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the current northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.029 ppt per year in 2000 to 0.056 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Furthermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by a factor of three

    Clinical profile of idiopathic angioedema based on severity and treatment response is independent of the presence of concomitant wheals

    Get PDF
    Background: Idiopathic angioedema varies in disease severity and treatment response, possibly due to different pathophysiological mechanisms. The presence of wheals is an indicator for histamine-mediated angioedema. Idiopathic angioedema patients are treated in accordance with chronic spontaneous urticaria guidelines. Little is known about treatment effectiveness in idiopathic angioedema patients without wheals in comparison to idiopathic angioedema patients with concomitant wheals. Objective: To describe the disease severity profile in patients with angioedema of unknown cause in relation to prophylactic treatment and the presence or absence of concomitant wheals. Methods: In this retrospective cohort study, all records of angioedema patients visiting the outpatient clinic of the UMC Utrecht between January 2015 and March 2020 were screened. Patients with idiopathic angioedema, including those with concomitant wheals, were included. Attack frequency, patient-reported disease control and attack treatment as indicator for severity were analysed in relation to prophylactic treatment at follow-up and outcomes were compared between patients with and without concomitant subordinary wheals. Results: Two hundred thirty-six patients were included: 95% (139/236) with angioedema only and 41% (97/236) with angioedema and concomitant subordinary wheals. No prophylactic treatment was prescribed in 27% (64/236), with well-controlled disease in 86% (25/29) of patients. Antihistamine monotherapy was used in 59% (139/236) of patients and resulted in well-controlled disease in 68% (62/92). Add-on treatment was prescribed in 14% (33/236) of patients, omalizumab in 9% (22/236) specifically, with complete response in 38% (6/16) of patients and low attack frequency in another 18% (3/16). Difficult-to-treat disease was seen in 8% (18/236), with no response to a fourfold dose of antihistamines or omalizumab. All findings were independent from the presence of concomitant wheals. Conclusion: Angioedema is well manageable in the majority of patients without prophylactic therapy or antihistamine monotherapy, but a substantial proportion does not respond to antihistamines and/or omalizumab. Treatment response was independent of the presence or absence of concomitant wheals
    • …
    corecore